
UOA: User-Oriented-Addressing for Slice Computing

Maoke Chen∗ † Akihiro Nakao‡ Olivier Bonaventure§ Taoyu Li∗

∗ Tsinghua University, Beijing, China
† National Institute of Information and Communications Technology (NICT), Tokyo, Japan

‡ The University of Tokyo, Tokyo, Japan
§ Université catholique de Louvain, Louvain-la-Neuve, Belgium

Abstract—Sharing computing resources over the Internet has
become a popular approach for creating innovative network
services. This emerging model of using networked computers is
called “slice computing”. The term “slice” refers to an intuitive
description for the collection of isolated resources. Isolation in
namespace, security and performance is the key to preventing
interference among users sharing the same slice computing
environment. Observing that the network identifier is the most
essential resource to be isolated, we try to add a minimal
change on top of the OS built-in features to enable network
namespace isolation. The idea is assigning network addresses
to user identifiers within a native OS. It is different from the
traditional Internet addressing architecture where IP addresses
are assigned to network interfaces and shared by all users.
Accordingly, we call it User-oriented Addressing, or UOA in
short. Case studies illustrate that UOA can be also applied to
facilitating innovation in routing architectures.

Index Terms—Slice computing, isolation, Internet addressing
architecture, overlay management

I. INTRODUCTION

The way of humans using computers is changing from
sharing a mainframe to having individual PCs and then to
networking them to each other. New trends in computing are
emerging where inter-networked computers, not only their data
or specific type of resources, but their whole computational fa-
cilities and environments, are merged into a single system and
re-allocated to multiple users. Users benefit not only from the
summation but also, more importantly, from the networking of
these computers, enabling innovative network services. These
trends have been reflected in the success of PlanetLab [19],
where research communities put their PC servers into a shared
testbed for a global scale network experiments. Taking the
PlanetLab as one of the prototyping approaches, the project
of Global Environment for Networking Innovation (GENI)
builds a federated facility to support long-term research and
development activities among the communities [6].

We define the “slice computing”, borrowing the term “slice”
from the PlanetLab, for a new model where computers are
organized into a shared, uniformed infrastructure. Each user
utilizes a certain unit of resources on each of individual
computers within it, and organizes its own, overlay networks
with these units. Each unit is treated as a “logical computer”
in the system, which we call “sliver” as in PlanetLab. A
slice consists of multiple slivers distributed across the Internet,
while a sliver usually stays in a single node. It is important
to prevent interferences among different slices on the same

physical node and to avoid cross-talks between applications
running on top of different slices. Resource isolation is a
technique used for avoiding interferences and is categorized
into three types, each targeted at the following resources,
respectively: namespace, security context, and performance
context. A variety of virtualization approaches has been ap-
plied into slice computing, with attempts to isolate these
three types of resources. For example, root-change (chroot)
approaches, such as Linux VServer [3] and FreeBSD Jail [1],
are employed in platforms of PlanetLab and EmuLab [15];
“paravirtualization” of Xen [5], [9] is applied in Grid5000 [2];
A full hardware-emulation approach such as VMWare [4]
is not widely used for slice computing due to the limited
scalability in terms of the number of slices.

In this paper, we propose a new approach to the slice
computing through adding a minimal change to the OS’s built-
in resource isolation to enable isolation of network namespace.
We observe that native operating systems (OS) already imple-
ment access permissions (for the security context) and alloca-
tions of disk, CPU as well as bandwidth among users and their
processes (for the performance context), but have no means for
the isolation of network namespace, i.e., the network addresses
that identify slices. Although any of the above virtualization
approaches can certainly resolve the namespace isolation, they
are often over-engineered to enable more features than are
necessary, sacrificing performance and flexibility over such
stringent resource isolation.

Our proposal is to assign each user id in an OS to an
individual IP address and to map a slice identifier to a user id.
Therefore, we call the proposal “User-oriented Addressing” or
UOA, in short, in contrast to the traditional Internet addressing
architecture where IP addresses are assigned to interfaces of a
host and users on the same node have to share those addresses
without distinction even if there are a number of addresses.

UOA can be used to support a network testbed for inno-
vations of new network services, which is the most popular
usage of the slice computing. In a broader sense, UOA
offers a novel fashion of using addresses in IP networks.
The Internet community is trying to split the role of IP
address into identifier (EID) and routing locator (RLOC).
They have proposed network-based [13], [22] and host-based
techniques [17]. These techniques benefit from UOA, as user-
oriented EID can meet different requirements on EID/RLOC
mapping for users running different applications. The com-

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



munity also attempts to allow end systems leveraging end-to-
end routing by selecting source and destination addresses in
a multi-homed environment [25]. UOA can be leveraged to
accommodate different demands of users who are sharing the
hardware and the network connectivity of the same host.

In the other work[11], we have identified the motivations
and design decisions of the UOA-supported node system for a
networking test-bed and have implemented it. Different from
that, this paper expands our view into generic slice computing,
and focuses on the architecture level issues regarding the UOA
approach, i.e., how the IP addresses, which are to be directly
assigned to user ids rather than network interface, should be
formatted, generated, managed and utilized differently from
before.

The rest of the paper is organized as follows. First, we
focus on UOA architecture for a large-scale testbed. Section II
enumerates the requirements for slice computing in terms of
addressing and Section III illustrates the necessary components
and operations in detail. Then, in Section IV, we discuss the
variants of UOA architecture in testbed deployment and in
routing innovations. Section V concludes the paper with future
work.

II. DESIGN CONSIDERATIONS

In the Internet, an address (either IPv4 or IPv6) is defined as
the identifier for an interface of a host connected to a certain
network. A so-called multi-homed host may have several
interfaces, thus multiple addresses. However, in such a host,
there exists no mechanism limiting the access to a particular
interface or address to a given user id. Application process
can either select any address or let the kernel automatically
pick one as the default address for its communication.

The lack of such address isolation makes a native OS not
suitable for slice computing, or results in inconvenience in
security protection. For example, port contention often occurs
among different slivers, if the applications on the slivers are
randomly initiating connections. For another example, tracking
back malicious behaviors for each user’s (address, port) usage
over time could be eased if such activities could be traced to
a particular set of users.

UOA aims to enable address isolation that limits access to
an address to a given slice. It is designed as a minimal change
atop the built-in features of network namespace isolation in op-
erating systems. It can be viewed as a light-weight alternation
for those over-engineered virtualization techniques employing
either hardware emulation and root environment change. It
is expected that built-in security and performance isolation
mechanisms plus this newly enabled address isolation are
adequate to support slice computing where moderate security
isolation is enough.

In the view of a remote peer in the slice computing
environment, UOA creates a sliver for user id inside an OS.
In comparison to the traditional interface-oriented addressing
architecture, the introduction of UOA brings two significant
consequences: (1) it utilizes a large number of addresses on
a single host, thus address management becomes a non-trivial

issue; (2) when we consider the situation where a sliver can
migrate to another hardware, we may have to remap IP address
for such a sliver. The migration of sliver in UOA poses exactly
the same remap problem as in ID/Locator separation discus-
sion elsewhere, since UOA maps slivers to the traditional IP
addresses. These two consequences imply that the realization
of UOA involves not only the implementation within OS but
also addressing architecture.

However, architecture design is related to the detailed usage
of the slice computing. We first regard the slice computing as a
platform for network innovations. As an example, we explore
its design considerations and further illustrate the architecture
of UOA for platforms. Then, we briefly outline the UOA for
routing innovations as a variant case study.

A. Assumptions

Regarding UOA as a platform for network innovations, we
assume the following prerequisites for its design.

1) There is a slice manager (SliceMan) globally de-
ployed [21], [20]. SliceMan maintains a database for
all the involved users and their slices and all the nodes.

2) SliceMan holds an enough amount of IP addresses to be
assigned to users.

3) Each hardware node has a multi-user operating system
installed.

4) Each hosting system has a pre-defined root (or the
Local System account in the Windows, equivalently)
associated with a reachable IP address and runs a set
of necessary services over the address. It is also typical
that the OS defines a set of system account, i.e., the user
ids only used to running services.

Assumption 1 conforms to the overall architecture of GENI
slice computing [21]. Assumption 2 implies that UOA ar-
chitecture is basically designed for IPv6; in IPv4, however,
even though the idea of assigning addresses to users can be
implemented, the architecture is hard to be comprehensively
deployed with the limited address space. Assumption 3 is
satisfied with most main-stream operating systems including
UNIX, Linux and Windows, while Assumption 4 ensures
the connectivity between the SliceMan and each hardware
computer and also the accessibility of any user to a computer
from any remote client.

B. Requirements on Address Uniqueness

The concept of Internet address uniqueness is comprehen-
sively defined and discussed for both IPv4 and IPv6 several
year ago [10]. Up to now, the problem proposed in RFC2101
— the contrast between stable identifier and dynamic locator
— still exists. People are attempting to solve the problem by
splitting the roles of EID and RLOC of IP addresses.

A sliver for user id is identified by peer with a unique
IP address. However, without the EID/RLOC-separation, we
cannot expect the uniqueness can be fully supported. We only
require that different slivers have different addresses (spatial
uniqueness) while one sliver has a distinct address or a group
of addresses (temporal uniqueness).

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



1) Spatial uniqueness: Spatial uniqueness in the Internet
means that one address identifies the unique host connected
to a certain network over the Internet. In UOA, the same
sentence above holds with host replaced with user id on a host.
The current automatic address assignment methods, including
DHCP[12] and IPv6 auto-configuration[24], typically assign a
unique IP address to an interface of a host, identifying an IP
address requester by its link-layer address.

2) Temporal uniqueness: Temporal uniqueness ensures a
host, which an address identifies, can be identified with the
same address for a duration of time. In UOA, the sentence
above holds with host replaced with user id. When a sliver
migrates from one node to another in the same network,
temporal uniqueness requires the sliver to have the same IP
address as before.

Without the EID/RLOC separation, the full support of tem-
poral uniqueness is not possible to be achieved if a sliver
migrates across different networks. In this case, the network
prefix has to be changed, since the sliver moves to a differ-
ent network, and then the temporal uniqueness is violated.
Once UOA and EID/RLOC-separation are merged into a new
addressing-routing architecture, the temporal uniqueness will
be well supported.

C. Requirements in Security Management

From the management view, identifying the origin slice of
a certain traffic is important for slice computing. IP address
plays the role of a handle for the origin. In order to make the
temporal trace-back of malicious behavior, the user-oriented
addresses must be static rather than frequently changed. Fur-
thermore, since a slice spans across multiple nodes, thus, is
mapped to a set of addresses, those addresses should share the
same prefix or suffix, or some token embedded in the addresses
that identifies the slice to ease the trace-back.

On the other hand, in the context where we need to protect
the privacy of the slice identification, we must employ hashing
or encryption in generating addresses for a slice, so that
the slice identity cannot be easily tracked down except by
the authority that has generated the addresses. Hashing and
encryption are also required to prevent spoofing and port
scanning. If the addresses are contiguously utilized, attackers
can easily predict all the addresses and attack them.

D. Requirements on Compatibility and Extensibility

The existing applications should still work transparently
with UOA, without any change and recompile on the part of
the applications. There are some applications running with the
mechanism of effective user id for execution, usually for the
purposes of taking over the privileges of the other user id.
With UOA, the mechanism of effective user id grants a sliver
the right to utilize the addresses assigned to another sliver.

In the case where a group of users share the same slice
(like several users having the same slice in the PlanetLab), a
group-wise address is required; on the other hand, assigning
IP address per application may simplify firewall or traffic

control regarding such application. We expect that group-
wise and application-wise addresses can be directly achieved
with proper configurations of multiple users having the same
address and one user having multiple addresses, respectively.
To this requirement on extensibility, UOA defines the corre-
spondence from user id to IP address many-to-many rather
than one-to-one or one-to-many.

E. Benefits

As a summary for the design objectives and requirement
analysis, we expect the following benefits if UOA is imple-
mented and deployed.

• Easy and fast deployment of a slice computing platform:
UOA can be merged into a native OS as a built-in feature
and turns such OS into a platform for slice computing
easily.

• Enlarged and isolated port space for applications: UOA
isolates port usage among users and reduces port conflict
in the multi-user environment.

• Fine grained routing control: if combined with
EID/RLOC separation or the NIRA approach [25], UOA
reflects the diversity in user’s demand on path selection
and enables each user leveraging routes by changing
addresses for its packet delivery independently in a multi-
homed environment.

F. Limitations

There are some inevitable limitations in UOA.
• Not supporting customized kernels: since we design UOA

as a minimal patch to a stock multi-user OS, slivers will
share the same kernel and execution environment, just as
in resource container virtualization.

• Not supporting run-time states migration: again, since
UOA designed on top of a stock OS, live migration
of run-time states are not supported unless the stock
OS supports. Application-level migration is still possible,
however, for example, Migratory TCP may be useful
[23].

• Overhead in neighbor discovery: UOA increases the
workload for neighbor discovery (or address resolution
in IPv4) in both neighboring hosts and leaf routers1.
Sliver migration in UOA also suffers from renew period
of neighbor discovery.

III. UOA ARCHITECTURE

UOA is an IP addressing model. The “architecture” of an
IP addressing model refers to the formation, management,
validation and usage rules of the addresses as well as the
role of addresses in routing. The IPv4 addressing architecture
has undergone a lot of changes, from class-specific to subnet
addressing and finally to the classless approaches [14]. In
IPv6, each interface can be configured with any number of

1The size of ARP or Neighbor Discovery (in IPv6) cache is often
a hot topic discussed among the engineers. See, e.g., a discussion enti-
tled as “neighbor/ARP cache scalability” in the following mail archive:
http://www.linux.sgi.com/archives/netdev/2004-09/msg00879.html

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



addresses[16]. The IPv6 addressing architecture also defines
the scope and format of addresses.

A. Types of User-oriented Addresses

In a slice computing environment, a user-oriented address
is the network identifier for a sliver of a slice, which is
mapped to user id in a certain hardware computer. According
to Assumption 4, there are also some user ids on a host
used for running services only, not mapped to any slice. To
make the UOA implementation self-contained, we treat such
user ids also as “user-oriented” but the term “user” here has
only the significance of local user id rather than an entity
mapped to a slice. Therefore we have two classes of user-
oriented addresses: slice-wise addresses, which are mapped
to slices, and node-wise, which are only used within one OS
distinguishing contexts of different user ids.

Node-wise user-oriented address is defined as a function of
the user id within a node. Management of the node-wise user-
oriented addresses, including the assignment and withdrawal,
is undertaken by node administers. A node administrator
obtains addresses prior to assigning them as node-wise user-
oriented addresses to user ids. Node-wise UOA is quite simple
and the direct result of the implementation enabling the UOA
feature in operating system.

The following architecture discussions focuses on the slice-
wise user-oriented address. If not specifically indicated, the
term “user-oriented address” refers to that type only.

B. Definition of Address

As manageability discussed in Section II-C requires, a user-
oriented addresses must be mapped to slice-specific informa-
tion.

Thus, a user-oriented address (uo addr) can be defined as a
function (ψ) of the triple of a network prefix (np), a global slice
id (slice id) and the time of the assignment (t a), as shown
in Eqn. (1). At each hardware node, a slice id is typically
mapped to a certain user id with a specific user name, which
is generated from the slice id by a rule.

uo addr = ψ(np, slice id, t a) (1)

It is not necessarily required that the t a is measured
uniquely across slices. Each slice can define the epoch for
its clock independently.

It is possible that a user id of a node is assigned with more
than one uo addr generated from the same slice id, exactly
the same t a but different np. This is the typical assignment
in a multi-homed environment, where more than one networks
connect the host.

A user-oriented address uo addr must have the form of
the combination of the network prefix np and a user-oriented
suffix, which is similar to the interface ID in IPv6 addressing
architecture, but it is not for an interface and therefore we call
it a pseudo-interface id, or pseudo iface id in the formula.

Then the instance of function ψ in Eqn. (1) can be further
written in Eqn. (2), where φ1 is a function hiding the user
privacy in the pseudo iface id while φ2 is a simple function,

as long as it can differentiate instances of the same slice at
different nodes. The operator “∥” represents concatenation of
two bit-strings.

ψ(np, slice id, t a) = np ∥ pseudo iface id

pseudo iface id , φ1(slice id) + φ2(t a)
(2)

C. Generation of the Addresses

The idea behind φ1 is similar to the Cryptographically Gen-
erated Addresses (CGA) [7] and the Hash-based Addresses
(HBA) [8] but there are some obvious differences. CGA
encodes public key with the MAC address of an interface
while HBA links the prefixes of the multihoming providers
into the host-id part of address together. We can simply select
a well-known cryptographic or hash function for φ1 to achieve
this.

Theoretic discussion on the strength of the hash function is
out of the scope of paper. We demonstrate a simple algorithm
in the evaluation part, but that simple version can be replaced
by any more sophisticated techniques in the real deployment.

D. User-oriented Address Management

The address management involves assignment, configura-
tion and withdraw of addresses. It also involves transfer of
addresses when we consider migration of slices from one hard-
ware to another. In a slice computing platform where SliceMan
exists, it coordinates the address management through specific
protocols.

SliceMan in UOA maintains node identifier, node id, and
slice identifier, slice id, indexed by assignment time, t a in
its database.

(slice id, t a) 7→ node id (3)

Without Eid/Rloc separation, np has to be selected from
those prefixes owned by the node, and the pseudo iface id
may be one or many of all the possible prefixes. SliceMan
decides which addresses are assigned for a certain a slice at
a node. If we had the EID/RLOC separation, a slice could be
assigned to an EID with a prefix np.

Assigning a user-oriented address to a slice inserts an entry
into the relationship (3), while withdrawing one deletes the
corresponding entry. Transferring from one node to another is
to update the value node id of the corresponding record.

1) Assignment and withdrawal: The process of user-
oriented address assignment and withdraw in a slice computing
are depicted in Fig. 1. A slice user sends a request to SliceMan,
which contacts the selected node. The node configures a proper
local user id for the slice and then takes up the uo addr as-
signed by SliceMan, configuring it with an interface connected
with the network specified by the prefix np and binding it to
the local user id. The timeline chart in Fig. 1 shows self-
explanatory operation primitives to depict this process.

We intentionally decouple the unit add and the iface up,
making the two operations atomic. The decoupling is signifi-
cant in the process of address transfer.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



Fig. 1. Timeline for user-oriented address assignment and withdrawal

Fig. 2. Timeline for user-oriented address transfer

In IPv4, there are definitely few addresses possibly to be
used, then we are forced to be back applying node-wise
user-oriented addresses, i.e., let node administrators specify
addresses, which they have already held, to user ids rather than
getting the addresses from the SliceMan. Afterwards, the local
administrator should register the assignment to the SliceMan.
The logic has to be inverse in comparison to the above design.

2) Address transfer: Address transfer is an interesting
mechanism in UOA architecture. When migrating a sliver from
one node to another, we also need to transfer its user-oriented
address, keeping the temporal uniqueness of the user-oriented
addresses. Note that we may have to change the network
prefixes for the address, if the migration of the sliver occurs
across different networks; otherwise it is enough to simply
transfer the address of the sliver from one hardware to another.

Fig. 2 illustrates the design for the transfer timeline. It is
necessary to initiate a sliver (a user id and its home directory,
etc.) on the target node first, and then copy it from the origin
to the target.

The uo addr can be enabled for the target user id a
little earlier but it is not enabled on a certain interface until
the original node has deleted the address. We need a strict
synchronization mechanism when the target and the origin are
in the same network to avoid address contention.

The process depicted in Fig. 2 shows only the transfer for

a part of the sliver context—the data and programs stored in
the file systems. This forms a basis of address transfer, and
the complete sliver migration follows including states and live
connections, etc.

E. User-oriented Address Sharing

Sharing user-oriented addresses among slices violates the
requirement on spatial uniqueness. Although the architecture
does not permit this, it may be sometimes useful in practice.
In the circumstance where IP addresses are scarce, we have to
share the precious addresses among different slices. In the case
where slivers are managed into groups, it also makes sense to
share a user-oriented address within a group.

1) Node-wise addresses sharing: Assumption 4 has stated
the root account in the OS doesn’t match any slice but also
holds node-wise addresses. System accounts are of the same
case as well. Because typically a system account is only used
for a certain service or a certain type of services (e.g., the
account nobody is used for HTTP daemon), it is not necessary
to assign one dedicated address to each of them. Instead, we
can let them just share the addresses held by the root.

2) Slice-wise address shared by users on the same node:
Sharing a slice-wise user-oriented address doesn’t affect the
definition described in (1), but does affect the address man-
agement and utilization.

When a uo addr is shared by a few slices, the operations
iface addr add and iface addr del in Fig. 1 and Fig. 2 are
implemented with a check on the address status. If another
user has added the address to a node, then iface addr add
does nothing. If anyone other than the user id still uses the
address uo addr, then the iface addr del cannot really delete
this address from the interface. Those user ids sharing the
same uo addr also share the same space of port numbers, and
the port selection and collision detection mechanisms in the
vanilla protocol stack and application programming interface
(API) take effect to prevent the contention.

3) Slice-wise address shared among different nodes: The
same address might be shared under the same user id (slice
id) at different nodes within the same network, although this
appears to cause address contention at the first glance. In other
words, two or more slivers belonging to the same user id (slice
id) would share the same address. Duplicating slivers onto
a different node would bring such situation. In this special
case, the shared address could be reached by the anycast
approach[18]. However, a slice user who attempts to do this
address sharing must keep in mind that two (or more) slivers
of the same address are logically dealt as the same sliver.

Cross-network sharing user-oriented address is not sup-
ported by the current Internet architecture but would be
available with the help of EID/RLOC separation.

IV. VARIANTS OF UOA ARCHITECTURE

In the previous two sections, we have discussed the archi-
tecture of UOA for a large-scale network innovation platform.
In this section, we first make a summary on what else are
needed for a PlanetLab-like platform supported by UOA, and

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



then take the NIRA as the example, explaining how UOA can
impact on a new routing architecture.

A. UOA-supported PlanetLab

The idea of UOA originates from the practice in large-
scale experiment platform, like PlanetLab. A UOA-supported
PlanetLab would consist of a group of UOA-enabled nodes
and the slice manager (SliceMan) in the Slice Facility Ar-
chitecture [21]. SliceMan administers the network namespace
and also the computational resource allocation regarding the
slivers (user ids).

For network namespace, UOA enables isolated IP addresses
among the user ids but their route (forwarding) tables are
still shared. With the help of the Policy-based Routing (PBR)
technique, e.g., the ip rule tool in Linux, it is quite easy to
define each user’s forwarding table by setting the matching
condition with source addresses of the user ids. If PBR is
integrated in UOA, slivers can easily control the outbound
route (next hop). However, controls beyond the first hop and
controls over the incoming traffics are only available with the
help of EID/RLOC-separation.

Resource allocation on the UOA-supported PlanetLab
would rely on the mechanism already enabled in the native
OS. For disk space, disk-quota tools is applied. For CPU time,
operating systems have provided a set of the system calls
for scheduling, e.g., the Real-Time Scheduler (RTS) in the
Linux. For outbound bandwidth, traffic controller like tc that
work through hierarchical token bucket can be applied. How-
ever, RTS can only schedule processes, so in UOA-supported
PlanetLab, we would have to extend RTS to schedule slivers.
The tool tc, on the other hand, controls packets based on
their attributes, such as source address and port, destination
address and port, and protocol. We should be able to apply
address-based control with tc to enabling traffic control at the
granularity of slivers.

B. UOA-supported Routing Innovation

Proposals for new routing architectures, including
EID/RLOC-separation and NIRA, introduce a variety of
controls over routing for end-systems. A common strategy
among these proposals is to interpret an address as a locator.
UOA can enhance all of these approaches with providing
fine-grained control over each individual user. In a slice
computing environment, this is much useful because one user
cannot predict a demand for a different routing from another
user sharing the same hardware.

We take the example of NIRA to demonstrate how UOA
can enhance its routing architecture. NIRA has proposed an
idea of hierarchically assigning addresses from the core to
the edge. An end-to-end route in NIRA is combined by an
uphill section determined by the source address and a downhill
section by the destination [25]. An example of NIRA routing
is shown in Fig. 3 (a). A host is connected to AS4000 and
accordingly has four addresses with different prefixes. Another
host is connected to AS6000 and has two prefixes. Between
them there are eight routes but, after the negotiation among the

(a) Vanilla NIRA: Alice and Bob have the same selection on the routes towards Cindy

(b) UOA-enhanced NIRA: Alice and Bob have diverse selections

Fig. 3. UOA combined with NIRA, supporting user-specific route control

two ends, the hosts will select one by enabling their addresses
in use. For example, here the host connected to AS4000 takes
the address 1:2:4::1 (shown as italic) and the AS6000’s host
takes 3:3:5:6::3 and then the route AS4000 → AS200 → AS10
→ AS30 → AS300 → AS5000 → AS6000 will be taken.

Such route selection is enabled for all users’ processes on
the same host. Suppose there are two users, Alice and Bob
on the host in AS4000. Obviously, they have to follow the
same selection of the route towards Cindy on the peer host.
However, Alice and Bob may have different understandings
and different demands for the end-to-end routing. Therefore,
they would like to leverage their paths independently.

Fig. 3 (b) describes the case where UOA assists the NIRA
routing. We enable Alice with the address 1:2:4::1 while Bob
with 3:3:4::2. As the result, the traffic from Alice to Cindy
will take the route as the above case, but the traffic from Bob
to Cindy will take another: AS4000 → AS300 → AS5000 →
AS6000. This example demonstrates that UOA enhances the
NIRA with enabling routing leverage towards different user
ids on an end system.

V. CONCLUSIONS

We summarize the contributions of this paper.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



First, based on the understanding that an IP address identi-
fies a logical computer in the Internet, we propose assigning
IP addresses directly to user ids within operating system in
order to support slice computing environment.

Second, identifying the requirements in address unique-
ness, manageability and privacy, we have designed the UOA
architecture with answering the question as to how a user-
oriented address should be defined, formatted, assigned, re-
moved, transferred and shared among users of slice computing
environment.

Moreover, UOA is not only an approach to facilitate slice
computing, but also an enhancement for addressing and rout-
ing architecture. For new routing architecture enabling end
system control over the end-to-end routes, UOA enhances
it to the control of end users. More detailed analysis and
experiment with routing leverage with user-oriented addresses
are left as our future work.

VI. ACKNOWLEDGEMENT

We thank following persons for their discussions and com-
ments on the UOA problem statement, architecture design
and system implementation: Prof. Xing Li from Tsinghua
University, Damien Saucez and others from IP Networking
Lab of UCL, Louvain-la-Neuve; Prof. Kurt Tutschku from
Univerisität Wien; Prof. Xiaowei Yang from Duke University
and Prof. Minghua Chen from CUHK.

REFERENCES

[1] Freebsd architecture handbook. http://www.freebsd.org/doc/
en/books/arch-handbook/jail.html.

[2] Grid’5000. http://www.grid5000.fr/.
[3] Linux vserver. http://www.linux-vserver.org/.
[4] Vmware. http://www.vmware.com/.
[5] Xen. http://www.xen.org/.
[6] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the

internet impasse through virtualization. Technical Report GENI Design
Document GDD-05-01, GENI Planning Group, Apr. 2005.

[7] T. Aura. Cryptographically Generated Addresses (CGA). RFC 3972
(Proposed Standard), Mar. 2005. Updated by RFCs 4581, 4982.

[8] M. Bagnulo. Hash based addresses. Internet-draft, draft-ietf-shim6-hba-
06 (work in progress).

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating
systems principles, pages 164–177, New York, NY, USA, 2003. ACM.

[10] B. Carpenter, J. Crowcroft, and Y. Rekhter. IPv4 Address Behaviour
Today. RFC 2101 (Informational), Feb. 1997.

[11] M. Chen, A. Nakao, and T. Li. Isolating IP addresses among users
in native OS for light-weight slicing in planetary scale testbed. Under
submission.

[12] R. Droms. Dynamic Host Configuration Protocol. RFC 2131 (Draft
Standard), Mar. 1997. Updated by RFCs 3396, 4361.

[13] D. Farinacci, V. Fuller, D. Oran, D. Mayer, and S. Brim. Locator/id
separation protocol (lisp). Internet-draft, draft-farinacci-lisp-09 (work in
progress).

[14] V. Fuller and T. Li. Classless Inter-domain Routing (CIDR): The Internet
Address Assignment and Aggregation Plan. RFC 4632 (Best Current
Practice), Aug. 2006.

[15] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau. Large-scale virtualization in the emulab net-
work testbed. In ATC’08: USENIX 2008 Annual Technical Conference,
pages 113–128, Berkeley, CA, USA, 2008. USENIX Association.

[16] R. Hinden and S. Deering. IP Version 6 Addressing Architecture. RFC
4291 (Draft Standard), Feb. 2006.

[17] E. Nordmark and M. Bagnulo. Shim6: Level 3 multihoming shim
protocol for ipv6. Internet draft, draft-ietf-shim6-proto-12 (work in
progress).

[18] C. Partridge, T. Mendez, and W. Milliken. Host Anycasting Service.
RFC 1546 (Informational), Nov. 1993.

[19] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A Blueprint for
Introducing Disruptive Technology into the Internet. In Proceedings of
the 1st Workshop on Hot Topics in Networks (HotNets–I), Princeton,
New Jersey, October 2002.

[20] L. Peterson, S. Sevinc, S. Baker, T. Mack, R. Moran, and
F. Ahmed. PlanetLab Implementation of the Slice-Based
Facility Architecture. Technical Report http://svn.planet-
lab.org/wiki/GeniWrapper#geniwrapper, February 2009.

[21] L. Peterson, S. Sevinc, J. Lepreau, R. Ricci, J. Wroclawski, T. Faber,
S. Schwab, and S. Baker. Slice-Based Facility Architecture. Technical
Report http://svn.planet-lab.org/attachment/wiki/GeniWrapper/sfa.pdf,
February 2009.

[22] B. Quoitin, L. Iannone, C. de Launois, and O. Bonaventure. Evaluating
the benefits of the locator/identifier separation. In MobiArch ’07:
Proceedings of first ACM/IEEE international workshop on Mobility in
the evolving internet architecture, pages 1–6, New York, NY, USA, 2007.
ACM.

[23] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory tcp:
Connection migration for service continuity in the internet. In ICDCS
’02: Proceedings of the 22 nd International Conference on Distributed
Computing Systems (ICDCS’02), page 469, Washington, DC, USA,
2002. IEEE Computer Society.

[24] S. Thomson, T. Narten, and T. Jinmei. IPv6 Stateless Address Autocon-
figuration. RFC 4862 (Draft Standard), Sept. 2007.

[25] X. Yang. Nira: a new internet routing architecture. In FDNA ’03:
Proceedings of the ACM SIGCOMM workshop on Future directions in
network architecture, pages 301–312, New York, NY, USA, 2003. ACM
Press.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects




