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Abstract—Services offered today rely on large amounts of
data that can be accessed fast and reliably. One technical
solution providing both acceptable speed and high reliability are
distributed databases, which can be accessed from an application
as one virtual database server. The virtualization here hides
complexity introduced by distributing the service to a set of
machines. In this paper, we will present a DHT-based architecture
implementing a lookup layer for such a database, which preserves
important features such as self-organization from its DHT roots,
but still offers a good performance for time-critical applications.
Additionally, first analytical results are given, which show some
of the basic mechanisms at work in such systems.

I. INTRODUCTION

In todays services, large amounts of data, e.g., video and
audio content, subscriber management and accounting data,
have to be stored and made available to applications. One
example area for this are mobile networks, where user data is
stored and accessed very often during the time a user is booked
in. The number of database accesses is potentially very large
and therefore poses a challenge to the system, which has to
show a high availability and performance while being at the
same time resource-efficient and scalable.

Examples exist where the amount of data to be stored
is large enough to warrant the deployment of a distributed
database. This is the case, e.g., for mobile subscriber databases
such as the Home Location Register (HLR) or a similar sub-
scriber database of a large provider. Distributing the database
system however adds additional complexity to the architecture.
It means a basic searching and routing mechanism has to be
implemented to look up single data sets. Also, the content
should be partitioned in a way that distributes the load on
the nodes. Thus, storage space consumption and the load on
individual nodes is reduced, which is traded off with longer
access times and a higher total load due to the forwarding.

In this paper, we will describe a component of such a
distributed database which was designed to offer good perfor-
mance while being resource-efficient. We have implemented a
prototype of this system and will present a first analysis based
on the mechanisms implemented in this prototype.

The paper is structured as follows. Section II reviews
related work. In Section III we will describe the considered
architecture, together with a discussion on the design aspects
of the system. Analytical results are presented in Section IV.
Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

The system presented in this work is to be placed in the
context of a mobile subscriber database, such as the HLR.
Architectures like the IP Multimedia Subsystem (IMS) include
similar databases, so that more than one possible application
exists [1]. There are even activities aiming at unifying and
generalizing the storage of user data for mobile networks. The
Common Profile Store (CPS) is an example for these efforts
[2]. Here, one encapsulated database is used for a number of
applications or services, instead of several proprietary smaller
ones. This only emphasizes the need for a scalable system
with respect to the approach described here, since the size
of the system grows with the number of smaller, specialized
databases that are integrated.

The architecture evaluated here belongs to the class of
one-hop DHTs. This class of overlays has been investigated
in a number of papers. For example, Gupta et al. [3], [4]
evaluate a fully meshed overlay architecture. They show that
the additional overhead needed to keep the complete routing
table in each node up-to-date can be handled even for large
overlays.

In [5], a different scheme based on tokens for maintaining
the global routing table in a one-hop overlay was presented
and compared to the mechanism of Gupta et al. Leong and Lik
showed here that less bandwidth was used in their architecture,
resulting in a more efficient system.

Another architecture and its analysis of a one-hop DHT was
presented in [6]. Again, it was shown that this kind of system
is indeed feasible in terms of message overhead and response
times to keep the complete routing tables needed at each peer
up-to-date.

A distributed database similar in spirit and with some of
the same design issues was published under the name of
Dynamo [7]. While our system implements the lookup layer
of a distributed database, Dynamo constitutes a complete DB
which is also based on a ring structure and follows similar
design principles. The architecture differs in details because
of the different applications. For example, since Dynamo is
used as a service for the Amazon S3 business platform, it has
to offer write access at all times for the end user. In contrast,
the system presented here is allowed to block write requests
in order to protect the data integrity. Additionally, we provide
analytical results for such a system.
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III. ARCHITECTURE DESCRIPTION

We consider a distributed database which stores user infor-
mation, such as the subscriber database in a mobile network
operator domain described earlier. Due to the large amount of
data stored, the database is distributed among several dedicated
database servers, which form the back-end. To locate specific
data entries in the back-end, a front-end layer offers the
necessary lookup and forwarding functionality, i.e., the front-
end resolves queries to the database and forwards them to
the correct back-end server. This lookup layer basically stores
pointers to the entries in the back-end, one pointer for each
database key. These pointers take the form of < key, value >

pairs, with the key being a reference to the database key
queried and the value holding the address of the back-end
server where the associated database entry is stored.

Applications, such as accounting, location management,
etc., issue queries to this database system, normally searching
for one entry at a time. These queries may be LDAP messages
or conform to other protocols suitable for accessing a database.
Application queries therefore do only see one virtual database
system, the internal complexity is hidden. They are received by
a front-end server first, which then resolves the contained key
to the address of the back-end server holding the associated
entry, cf. Figure 1. Basic load distribution may be conducted
before forwarding queries to the individual front-end servers,
however, this work focuses on the lookup layer itself.

Application clients

Virtual 
database system

front end/lookup layer

back end/data layer

Application query

Fig. 1. The basic system architecture considered in this paper.

Mobile subscriber databases have several requirements
which have to be taken into account when evaluating a possible
instantiation of this architecture. Queries to such a database are
frequently part of a longer process involving a current action
of the subscriber, such as booking in, requesting a special
service or changing the access network (horizontal or vertical
handover). In order to keep the service quality experienced
by the user high, the response times of the provider system
as a whole and therefore also of the database have very tight
timing bounds. For the same reason, the availability must be
as high as possible.

Since the user data stored is critical for many services such
as accounting, reliability and correctness is also required. This

is prioritized sometimes even over availability. The system
may even be unreachable or entries may be write-locked for
short times as long as the correctness of the stored data can
be guaranteed.

In order to facilitate a fast lookup process, the lookup
information is not stored on disk at the front-end nodes, but is
held in the memory of these nodes. Depending on the size
of the database tables stored at the back-end, and on the
number of searchable keys, this lookup table as a whole can
reach sizes of several dozen GB. The simplest implementation
of such a front-end system is to install a number of fully
redundant lookup servers, each storing the full lookup table.
Consequently, this means the amount of installed memory
needed on each machine is in the range of the size of the
lookup table. The number of servers depends on the system
load, i.e., the arrival rate of the application queries.

In the following, we will describe a different, resource
saving and self organizing implementation of this front-end
system, based on the DHT principle.

A. Problem formulation

The application described above places several requirements
on a lookup system that resolves queries for a back-end
database. Since the database query is only a part of a larger
process in the mobile environment which has severe timing
constraints, the lookup itself must be kept as short as possible
while being also highly reliable and available. If the user
database at the back-end is not reachable, the experienced
service quality for the user is diminished. On the other hand,
the system should be as resource-efficent as possible. In
this case, the enormous amount of RAM needed to store
the lookup data is one of the highest cost factors when the
data is stored fully redundant on several nodes. Therefore,
saving memory consumption is a good approach to make the
system more cost-efficient. Scalability is another issue that
has to be addressed. The database size may grow over time,
necessitating an expansion also of the front-end system. It
should therefore be possible to add new servers and to integrate
them seamlessly into the system. As a last consideration, the
system should need only a minimal amount of human control
and intervention. This saves costs, but also may lead to shorter
response times in case of certain events if the system can react
automatically.

The problem with these requirements, especially with speed
and resource-efficiency, is that not all of these objectives can
be accomplished at the same time. There is an implicit tradeoff
between a fast search, where a fully redundant storage of the
lookup data would be the best case, and a smaller lookup
table per node, which necessitates a time-consuming internal
routing process. This is complicated by the fact that lookup
data distribution is not efficient for all resources, since internal
traffic means more consumed bandwidth and a higher query
load that has to be processed on the servers.

Also, if the data is not stored fully redundant, it has to
be distributed in a way that still allows for load distribution.
Moreover, this balancing should be resilient to node failures or
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to system expansions. At least, mechanisms should be imple-
mented that allow for a correction of temporary imbalances.

B. Implementation

In order to fulfil these requirements, we have implemented
a one-hop DHT, based on the Chord DHT. The interface of
a DHT, namely the ability to store and retrieve pairs of keys
and values, is perfectly suited to a lookup system. The original
database search keys can be hashed to serve as hash table keys,
and the storage locations of the associated data sets are the
stored values.

Since short sojourn times are required, the routing paths
through the overlay introduced by the DHT have to be as short
as possible. On the other hand, if the memory consumption is
to be lowered in comparison with a fully redundant system,
the lookup table has to be partitioned in some way among
the nodes. This necessitates at least a basic routing process.
Combining these two requirements leads us to a fully meshed
overlay structure, where at most one hop is necessary to
locate a given entry in the DHT. This means that each node
participating in the system has to know exactly what partition
of the content is stored on each of the other nodes. Since the
complexity of storing this information rises with the number
of nodes, this potentially does lead to scalability problems.
For our application however, we can assume system sizes in
the range of 100 nodes for the considered application, where
this can be handled easily. However, as described in Section
II, similar systems (known under the term one-hop DHTs)
have already been considered also for larger system sizes, and
shown to be feasible.

Another important consideration concerns the load distribu-
tion in the system. If the lookup data is distributed unevenly
among the nodes, and if we assume that in general each entry
is queried with the same frequency, then the load distribution
is also skewed. Moreover, the nodes storing more lookup data
have to provide more memory. If it can not predicted how the
load will be distributed, all nodes have to be outfitted with
enough resources to handle the worst case, resulting in higher
costs than necessary. To circumvent this problem, the random
overlay ID assignment known from most DHTs is replaced by
a deterministic positioning of the nodes in the overlay, assuring
that each node is responsible for the same amount of data (cf.
Figure 2).

While the considered application normally warrants the de-
ployment of dedicated hardware with long mean time between
failures (MTBF) intervals, it is nevertheless possible that a
node or one of its components fails during normal operation.
Node failures greatly upset the even load distribution in the
system, leading to overload and/or congestion and should
therefore be acted upon immediately. In order to keep the
need for manual intervention low, an automatic reorganization
algorithm is used to reassign the IDs of the remaining nodes,
thus again placing them equidistantly on the identifier ring.
Since this also includes a change in the responsibility ranges
for each node, a redistribution of the lookup data is necessary
in this case. A simple heuristic is used to keep the amount of

Node A

Responsibility
range of 
node A

Redundancy
R = 2

Front end 
server

ID space

Node A

Responsibility
range of 
node A

Redundancy
R = 2

Front end 
server

ID space

Fig. 2. Equidistant placement of nodes on the identifier ring

data that has to be transmitted over the network low. Starting
from an anchor node, each node is positioned in the correct
distance (computed with the new number of active nodes) in
the same order as before. Thus, there is a high probability that
the old range of a node has a large overlap with its new range,
meaning that the node already stores much of the data it needs
in the new situation (cf. Figure 3).

anchor 
node A

overlapping
range

failed 
node B

CD

E

E’

D’

C’

new inter-node
distance
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CD

E

E’

D’

C’
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Fig. 3. Reorganization after one node failure

The same algorithm is used to add new nodes to the system,
enabling an easy expansion and scaling with load. If more than
one node is to be added at the same time, the new nodes are
inserted equally distributed into the system, so that again the
overlap between old and new responsibility ranges is high for
the ’old’ nodes.

To ensure that the probability for data loss is low even in
case of node failures, each entry of the lookup table is stored
on more than one node. Similar to the replication group in
Chord, it is copied on the R successor nodes of the key of
the entry, with the first successor being the node primarily
responsible for the entry. Here, R is a tunable parameter that
enables a tradeoff between resource savings on one hand and
system load and availability on the other hand, as will also be
shown in Section IV.

With these mechanisms, the normal system operation is as
follows. An application issues a query to the database of which
the lookup system is part of. These queries are distributed
evenly among the lookup nodes, e.g., by means of a simple
round robin load distributor. When a query reaches a lookup
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node A, this node first hashes the database key of the query.
It then checks whether it stores the lookup entry associated
with this key locally, including the redundantly stored data.
If this entry is not stored locally, then the node determines
which other node is responsible for it via its routing table,
and requests the entry from that node. In either case, the
original query is then forwarded to the according back end
database server, whose address is the stored value of the
< key, value > pair of the lookup entry. The response to
this query can then again be forwarded to the application.

In case of a remote lookup, the node with the lowest ID
higher than the hashed key searched for is always selected as
the responsible node. This eases the routing process in case of
node failures, and should still return valid results as long as no
data loss has occurred, which is only possible if R consecutive
nodes fail in a short time interval. While the query load for
one entry could also be distributed among the R nodes storing
that entry, we assume that each entry is queried with the same
frequency, and therefore no additional gain can be achieved
by this measure.

IV. ANALYSIS

In this section, we present a first analysis of the described
system. This is based on a methodology presented in [8],
where we considered a more general system and the param-
eters that influence its behaviour. We model the front end
servers as queuing systems, with the complete network being a
queueing network. Thus, we can analyze system characteristics
like the sojourn time.

Each node is modeled as a M/GI/1 waiting system. In this
first model, we make some simplyfying assumptions. First, the
processing times for queries are assumed to be independently
and identically distributed (iid), i.e., we do not discern the
processing of external queries, internal queries or response
forwarding. Second, we assume that the popularity of each
database entry is the same. To conduct the analysis, we have
to compute the arrival rate at each node, which is a function
of the number of nodes and of the number of hops that are
made internally.

A. Node load

Each node initially receives its fair share of the application
queries. If we define the total initial arrival rate as λ0, and
the system consists of N servers, this initial load at a specific
server corresponds to λ0

N
, cf. Figure 4. Of these queries, the

server can only resolve a fraction locally, depending on the
partition of lookup data it stores. Ideally, this fraction should
be p = R

N
, where R is the redundancy factor (1 ≤ R ≤ N ).

The rest of the queries has to be resolved on a second server,
and is consequently forwarded. This outgoing query flow is
equally split among the N − 1 remaining nodes. Due to the
symmetry of the traffic flows, the same amount of queries
(with rate p · λ0

N
) is received. This traffic is therefore added to

the external query flow.
All of the internal queries are answered, effectively doubling

the internal traffic. This is due to the fact that the first node

receiving the request is responsible for resolving the complete
query and forwarding the response to the querying application.
Some traffic could be saved if the database virtualization
allows for the second node or even a back-end server to
answer the query instead of the first reached node. However,
we describe the most general and worst case here with the
least assumptions about the interface between the external
application and the virtual database system.

Finally, all application queries received by that server are
forwarded to the back end database, and the answers are again
forwarded to the first node to be forwarded to the application.
Therefore, the full rate of λ0

N
is again received from the back

end and processed, leading to a total arrival rate of λ∗ =
(2 + 2p) · λ0

N
.

Application clients

Back end database

0

N
λ

0

N
λ 02 p

N
λ

⋅ ⋅

Front end server

Application clients

Back end database

0

N
λ

0

N
λ 02 p

N
λ

⋅ ⋅

Front end server

Fig. 4. The traffic flows influencing the node arrival process

B. Sojourn time

Based on this model, we can compute important character-
istics like the mean sojourn time of queries or its coefficient
of variation. For the following results, we assumed a service
process with mean E[B] = 1ms and a coefficient of variation
of cB = 0.5. To model the internal network transmission, i.e.,
query forwarding from front-end server to front-end server,
we use an exponential distribution with mean 0.3ms. We do
not consider the querying of the back end database here, but
focus on the time a query spends in the lookup system itself.

We will now present selected results from this analysis,
which provide some basic insights into the presented system.
One of the important parameters that influences the system
behaviour is the redundancy factor. It has a direct influence
on the probability that a query has to be forwarded internally
in the lookup layer, and therefore on the total load a front end
server experiences. Figure 5 shows the mean sojourn times
of queries normalized by E[B] for a system with 20 nodes
and different redundancy factors, ranging from R = 1 (no
redundancy) to R = 20 (full redundancy, no forwarding is
required).

Due to the fact that the internal load is up to four times
larger than the external load (i.e., the query load produced
by the applications exclusively), only values up to 0.25 are
experienced for the externally seen utilization ρ = λ0

N
E[B]

per front-end server.
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Fig. 5. Mean sojourn time for different redundancy factors for a system
consisting of 20 nodes

The mean sojourn times increase for lower redundancy
factors, which is due to the higher fraction of queries that
have to be forwarded in the lookup layer, resulting in a higher
load at the nodes and therefore longer waiting times. On the
other hand, a higher redundancy also means that more data
has to be stored on each node. While this should be of no
concern where cheap disk space can be used, it is a tradeoff
to be considered for our application, as described earlier. In
any case, the redundancy factor can be used as a parameter to
tune the system to the needs of the operator.

C. System size

Another parameter influencing the system performance is
its size in terms of the number of front-end servers. The
larger the system is, the higher is the forwarding probability
and therefore the internal load. Figure 6 shows this by again
comparing the mean sojourn times for numbers of front end
servers ranging from N = 5 to N = 30. The redundancy
factor is set to R = 3. Additionally, the hypothetical case
where every query is forwarded internally, i.e., p = 1 is
represented as an upper bound (dashed line).

Again, the mean sojourn times increase with a larger for-
warding probability. However, the load increase resulting from
more front end servers diminishes for already large systems.
This is due to the fact that the forwarding probability p grows
fast for smaller systems, but is soon close to 1, e.g., p = 0.85
already for 20 nodes and R = 3.

D. Reorganization effort

An important aspect for the presented system design was
its ability to react to changes in the topology, especially node
failures. Since load distribution is a critical characteristic for
the efficiency of the described architecture, it has to be restored
as soon as possible after one or several node failures. The
same is true for inserting additional nodes into the system,
however, we assume that an expansion is executed in a more
planned and controlled manner. Apart from this, the reduction
of servers also increases the load on the remaining servers,
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Fig. 6. Mean sojourn time for different system sizes

even if an equal load distribution can be achieved. Therefore,
it is a kind of worst case for the reorganization algorithm.

In order to conduct a first evaluation of the rather straight-
forward method implemented in our prototype, we conducted
a Monte-Carlo simulation for different node failure scenarios.
We varied the number of nodes that fail concurrently in a
system consisting of 40 nodes. For a given number f of node
failures, we selected a random subset S of the nodes with
|S| = f . This experiment was repeated 10,000 times for one
value of f , the shown intervals are for a confidence level of
99%. We recorded the amount of data that had to be moved
during the reorganization phase in order to achieve equal load
distribution again, relative to the total amount of data stored.
We assumed here that the data is placed with roughly equal
density on the identifier ring. Also, we neglected cases where
enough successors of a failed node also fail, which results
in the loss of data. Since in this case less data has to be
transmitted over the network, the presented results are an upper
bound, even if data loss is an undesirable event.

Figure 7 shows these results for different grades R of repli-
cation, ranging from R = 2 to R = 4. The amount of data that
has to be transmitted increases for higher replication grades
and a larger number of node failures. Also, the maximum
amount of data moved in the worst case equals R · 100%,
meaning that more data has to be moved than there is in
the ring. This initially counter-intuitive characteristic stems
from the fact that the responsibility areas of the reorganizing
nodes may overlap, meaning that several nodes have to retrieve
the same data sets if they have not stored them before the
reorganization.

Due to fact that each node is responsible for a single,
continuous range of the id space, the number of data entries
that have to be moved to a new node is not equally distributed
among all nodes. Especially the successors of a failed node
normally have to be moved a larger distance in the identifier
space than the following nodes. It is to be expected that
different schemes, such as the one proposed in [7], might be
able to reduce this unfairness, lowering the amount of data
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that has to be moved, and consequently also the time it takes
to reorganize.
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Fig. 7. Relative amount of data that has to be moved during reorganization

V. CONCLUSION

In this paper, we presented and evaluated an architecture for
a virtual mobile subscriber database based on a one-hop DHT.
The requirements and design issues influencing the system
layout are described, and a basic overview on the developed
architecture is presented. It is shown that the design caters
to the necessities of the application. It provides a trade-off
between the system sojourn time on one hand and resource
consumption on individual nodes on the other.

A performance evaluation model was presented, the results
derived from it giving some insights into the basic workings
of the lookup system. The underlying tradeoff of less storage
space per node against longer search times and a higher load

on the system is illustrated. As future work, measurement
results from an implemented prototype will be used to verify
the analysis, as well as simulations. More emphasis will be
placed on the system behaviour during transient phases, e.g.,
reorganization times.
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