
Implementing Network Virtualization for
a Future Internet

Panagiotis Papadimitriou§ Olaf Maennel‡ Adam Greenhalgh∗ Anja Feldmann‡ Laurent Mathy§

§Computing Dept., Lancaster University, UK
{p.papadimitriou, l.mathy}@lancaster.ac.uk

‡Deutsche Telekom Laboratories, Germany
{olaf, anja}@net.t-labs.tu-berlin.de

∗Dept. of Computer Science, University College London, UK
a.greenhalgh@cs.ucl.ac.uk

Abstract— The Internet has become an essential communi-
cation medium upon which billions of people rely every day.
However, necessary evolution of the Internet has been severely
limited by reliability constrains and social-economic factors.
Experts fear that current growth rates will threaten the future of
the Internet as a whole, despite the fact that new core technologies
already exist.

Network virtualization presents a promising approach to
overcome ossification and facilitate service deployment for a
future Internet. Exploring this approach, we present a prototype
implementation which realizes a subset of the 4WARD virtual
network (VNet) architecture, allowing multiple VNets to coexist
on top of a shared physical infrastructure. We discuss the
functionality of our prototype and demonstrate experimental
results to assess its performance.

I. I NTRODUCTION

The Internet realizes William Gibson’s vision of Cy-
berspace: “A consensual hallucination experienced daily by
billions of legitimate operators, in every nation”. Indeed, this
so-called ‘network of networks’ has changed the way that
humans interact and provides the crucial foundation for a
multitude of businesses.

To residential customers or service providers the Internet ap-
pears as widely successful and well-performing; nevertheless,
the underlying infrastructure suffers from ossification [15], [4].
Service Level Agreements (SLAs), for example, demand high
reliability constrains, such as 99.99999% network availability.
Short outages, already in the order of minutes per year, or a
router misconfiguration can easily cause serious implications
for the Internet Service Provider (ISP). This impacts the
deployment of new services, as the risks of breaking existing
services are high. Therefore, according to the saying “never
change a working system”, ISPs often have no incentive to
change their network or to introduce new technologies.

Indeed, over the last 20 years most new disruptive tech-
nologies came from the edge, while the core has remained
almost unchanged. However, this resistance to change leads to
some serious problems. Soon ISPs might not be able to add
any more new customers, because IPv6 deployment has been
neglected and we are now facing the depletion of the IPv4

address space. Also routing table growth, inadequate support
for inter-provider multicast, Quality of Service (QoS), device
mobility, manageability and/or security will eventually enforce
providers to revisit their core architecture.

To circumvent the difficulty of changing successful net-
works, the concept of overlays has proven to be very use-
ful [16]. One of the key insights when looking at an overlay
network is that each overlay can be considered to be a virtual
network. Fundamentally, virtualization is anabstraction con-
cept in that it hides details, and therefore allows you to cope
with heterogeneity and complexity. As such it offers alevel of
indirection as well asresource sharing. The former results
in more flexibility while the latter enables partitioning as
well as the re-usage of physical resources, resulting in higher
efficiency. However, to ensure successresource separation
with a sufficient level ofisolation is required.

In this paper, we explore the space of network virtualization
by utilizing existing technologies. Our primary goal is to
demonstrate that already today we have all the necessary
ingredients needed to create a paradigm shift towards full
network virtualization. We present the facets of how to create
VNets, and discuss the lessons learned from implementing a
prototype system. This serves as an example of how existing
technologies can be leveraged to help take the first steps
towards an evolvable Internet.

The remainder of the paper is organized as follows. Section
II outlines the enabling technologies required to build a virtual
network. In Section III, we present the architecture behind
our prototype implementation. In Section IV, we discuss
the functionality and some implementation details for our
prototype. Section V provides experimental results with the
prototype. Finally, in Section VI we highlight our conclusions
and refer to directions for future work.

II. ENABLING TECHNOLOGIES

In this section, we provide an overview of the various link
and node virtualization technologies that exist today and could
be used to form a virtualized network.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects

Virtual Local Area Networks (VLANs) are the most com-
mon example oflink virtualization, allowing the creation of
isolated networks where all participating nodes are in a single
broadcast domain. Most Ethernet switches support tagged
and untagged VLANS based on the IEEE 802.1Q standard,
whilst some support the new stacked VLAN tags standard
based on IEEE 802.1ad. Besides VLANs, tunneling technolo-
gies, such as encapsulation of Ethernet frames to IP data-
grams (EtherIP) [9], IP-in-IP,Generic Routing Encapsulation
(GRE) [7] andMulti-protocol Label Switching (MPLS) [17],
are widely used to create virtual private networks (VPNs) and
eventually build the foundation for virtual networks in Wide
Area Networks (WAN).

Node virtualization aims to provide efficient sharing and
isolation of computing resources, such as CPU and memory,
so that multiple operating systems can run concurrently in a
single physical machine. Existing techniques for virtualizing
physical nodes includefull virtualization, paravirtualization
and container-based virtualization. Full (or hardware) vir-
tualization, such as KVM [10], provides a fully emulated
machine in which a guest operating system can run. Full
virtualization offers the highest level of isolation; however,
it may incur performance and resource penalty. Paravirtual-
ization mechanisms, such asXen [2] and Denali [19], provide
a Virtual Machine Monitor which runs on top of the hardware
and is able to host multiple virtual machines (VM). Each
VM appears as a separate computer with its own operating
system and software. Paravirtualization, therefore, offers in-
creased flexibility when differentguest operating systems are
required to run in a physical node. However, this capability
results in increased overhead compared to container-based
virtualization. The latter approach creates multiple partitions
of operating system resources, calledcontainers, relying on
advanced scheduling for resource isolation. However, the level
of achievable isolation is usually lower in comparison with
paravirtualization mechanisms. In addition, each container is
bound to run the same version of operating system as the host
machine. The obvious advantage of container-based virtual-
ization is performance due to their reduced overhead. Typical
examples of this virtualization technology are OpenVZ [13]
and Linux-VServer [12].

III. N ETWORK V IRTUALIZATION ARCHITECTURE

Visions of a future Internet, and in particular network virtu-
alization architectures, have been discussed for more than10

years (e.g., [18], [1], [3], [6], [20]). In this section, we briefly
summarize the architectural concepts behind our prototype
implementation.

A. Roles and Actors

Today’s Internet is maintained and operated by a set of
Internet ISPs and companies. Each ISP owns its part of the
physical infrastructure and operates an IP network on top of
that infrastructure. The Internet is created by inter-connecting
all of these networks. However, there is also a “vertical” split:

Fig. 1. VNet Architecture Overview

one part of the ISP is often responsible for owning and main-
taining the physical resources (e.g., routers, switches), while a
different part of the same ISP is responsible for providing IP-
layer connectivity (e.g., managing configuration, and assuring
routing is functioning). Network virtualization adds a layer of
indirection between physical resources and network operation
and management. Hence, virtualization provides the technical
prerequisite for a technical separation of these business roles.

The VNet architecture (Fig. 1) enables multiple VNets to
coexist on top of a shared physical infrastructures spanning
multiple infrastructure providers. Such VNets can be tailored
to have certain properties and guarantees not currently
available in today’s Internet, such that existing or emerging
applications and services can be more effectively deployed.
This architecture comprises the following actors (Fig. 1):

• The Physical Infrastructure Provider (PIP), which owns
and operates the physical network, the physical routers
and the physical interconnects with other PIPs. The
VNet architecture assumes the existence of multiple
PIPs which can lease slices of their physical resources in
order to enable the creation of multiple isolated virtual
networks.

• The Virtual Network Provider (VNP), which combines
the slices of virtualized infrastructure from PIPs together
into a functional VNet. This provides the missing layer
of indirection between the PIP and the VNO.

• The Virtual Network Operator (VNO), which operates
and manages the instantiated VNets. For the VNO the
virtualized networks appear as if they were physical
networks. The VNO does not necessarily have any
knowledge of the substrate configuration or the PIP. A
VNO can only control resource allocations indirectly by
specification of requirements that must be met by the
VNP.

These roles reflect the indirection created by the virtualiza-
tion mechanism. Certainly, the roles of the PIP and the VNP
may be performed by the same business entity or the VNP

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects

and the VNO may coincide. In the remainder of this section,
we discuss VNet instantiation and end-user attachment.

B. Virtual Network Instantiation

VNet instantiation involves several interactions between the
VNO and the VNP, as well as the VNP and the participating
PIPs. All VNet requests are communicated using a (yet to
be standardized) resource description model which includes
separate descriptors for nodes and links, allowing ultimately a
coherent VNet specification.

Each PIP exposes interfaces to allow the VNP to request
virtual resources and networks. VNet instantiation requires
at least one (pre-determined)management node within each
PIP. Such a node is mainly responsible for handling VNet
requests on behalf of the PIP. Essentially, the instantiation of
a VNet takes place in the following consecutive steps:

1) Exchange of resource information: VNet requirements
are formulated and handed from the VNO to the
VNP. Such requirements describe the number of virtual
resource instances, as well as their respective properties.
Since VNet requests are not known in advance, they
are processed as they arrive both by the VNP and the
PIPs. The outcome of each request is communicated to
the VNP and subsequently to the VNO.

2) Resource discovery: The VNP maps the requested
virtual resources and their properties onto PIPs,
negotiates with the PIPs for resources and
interconnections and hands respective partial topology
descriptions to them. Each PIP is responsible for
the mapping of the given partial topology onto
its substrate and the setup of connections to PIPs
hosting neighboring parts. Alternatively, a PIP may be
willing to advertise its available physical resources,
delegating the mapping of the VNet to the VNP. In
this case, the PIP eliminates the mapping overhead
with the potential risk of revealing resource information.

3) Resource virtualization: Following resource discovery
and VNet mapping, each PIP management node is
in charge of the virtualization process by signaling
individual requests to the assigned substrate nodes. Each
node handles such a request within its management
domain, which subsequently creates and configures
virtual machines.

4) Topology construction: Virtual nodes are typically inter-
connected by setting up tunnels on top of the substrate
in order to form the requested virtual network. Each
virtual machine uses its virtual interface to transmit
packets, which are encapsulated and injected to the
tunnel. On the receiving host, the incoming packets are
demultiplexed and delivered to the appropriate virtual
machine.

I n f r a s t r u c t u r e p r o v i d e r s 3
2 1

E n d u s e r n o d eS u b s t r a t e n o d e(w i t h d i f f e r e n t V N e t s)A u t h e n t i c a t i o n V N e t(p e r i n f r a s t r u c t u r e p r o v i d e r)P r o v i s i o n i n g M a n a g e m e n t V N e t(C o r e)V N e t p r o v i d e r(p a r t o f p r o v i s i o n i n g m a n a g e m e n t V N e t)
Fig. 2. VNet End-user Attachment

5) Console access: In order to allow the operation and
management of the virtualized infrastructure, the VNP
establishes console access to the instantiated virtual
nodes.

This sequence of steps provides a fully virtualized network
which is ready to be operated and managed by the VNO.

C. End-user attachment

Upon VNet instantiation, the end-user needs to establish
connection to the VNet. End-user attachment can be achieved
by the following two options:

• The VNO/VNP issues a request to extend the VNet all
the way to the end-user.

• The end-user requests that a tunnel over existing
substrate is constructed towards a “VNet access point”.

According to the first option, the VNet is provisioned all
the way to the end-user in the same way as the whole virtual
network was set up. This means that VNet provisioning is
triggered by the VNO, communicated via the management
system to VNP, and subsequently requested as dedicated
resources from the PIP. The main advantage of this approach
is that all QoS guarantees, and security requirements are met.
Disadvantages include scalability and the fact that nodes in
the access network of the PIP need to support virtualization.

Alternatively, the user can initiate the connection setup, as
shown in Fig. 2. In contrast to the previous approach, this
option offers significant scalability advantages, especially with
a large number of end-users. In this case, the end-user needs to
establish connectivity with the substrate, which subsequently
requires authentication with the PIP while the user has to know
or retrieve the “VNet access point”. Provided that the PIP is
able to provide substrate connectivity up to that point, end-user
attachment is eventually achieved via a “tunnel” or “VPN”.
Using a tunnel, QoS guarantees are much harder to fulfill;
however, the legacy equipment on the last mile renders this
approach more scalable.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects

Fig. 3. Prototype Overview

IV. PROTOTYPE IMPLEMENTATION

In this section, we discuss the implementation and function-
ality of a prototype for the preceding architecture.

A. Infrastructure and Software

The prototype is implemented onHeterogeneous Experi-
mental Network [8], which includes more than 110 computers
connected together by a single non-blocking, constant-latency
Gigabit Ethernet switch. We mainly used Dell PowerEdge
2950 systems with two Intel quad-core CPUs, 8GB of DDR2
667MHz memory and 8 or 12 Gigabit ports.

The prototype takes advantage of node and link virtualiza-
tion technologies to allow the instantiation of VNets on top
of a shared substrate. We used Xen 3.2.1, Linux 2.6.19.2 and
the Click modular router package [11] (version 1.6 but with
patches eliminating SMP-based locking issues) with a polling
driver for packet forwarding. We relied on Xen’s paravirtual-
ization for hosting virtual machines, since it provides adequate
levels of isolation and high performance [5].

B. Functionality Overview

We implemented all the basic functions of the infrastructure,
the VNP and VNO, as described in Section III, so that the
prototype can realize the instantiation of VNets. Furthermore,
the prototype offers on-demand operational and management
capabilities (e.g., virtual machine migration), which are typi-
cally invoked by the VNO.

A fixed number of HEN physical nodes compose the
substrate (PIP) which offers resources to the VNP for on-
demand creation of virtual networks. Separate nodes act as
the network operation centre (NOC) of the VNP and VNO.
The NOC of the VNP establishes direct connection with a
dedicated management node belonging to the PIP. This node
is mainly responsible for realizing all the VNet requests to the
PIP. Fig. 3 illustrates an overview of this prototype.

The communication between the NOC of the VNP and the
substrate management node involves the exchange of resource

Fig. 4. Substrate Node with Bridged Configuration

information. We used an XML schema for the description of
virtual resources with separate specifications for nodes and
links. Our resource description is able to capture a variety of
VNet requests, such as location, processing power, memory,
link bandwidth or number of network interfaces, allowing
the instantiation of a network according to the requested
specification.

Since VNet requests are not known in advance by the
substrate, the prototype allows the dynamic processing and
execution of these requests (subject to availability of physical
resources) as they arrive. The outcome of each request is
subsequently communicated to the VNP. Our prototype peri-
odically monitors the state of the substrate resources enabling
the management node in the substrate to check whether the
available physical resources are sufficient for the execution of
a VNet request. This function allows for admission control
when the substrate resources are limited, i.e., rejecting (or
postponing) VNet requests when they violate the resource
guarantees for existing virtual nodes or networks.

Our implementation supports resource discovery either at
PIP (i.e., resources are not advertised) or at the VNO (i.e.,
when VNO is aware of physical resources). Besides the
availability of physical resources, the PIP maintains a list
of individual attributes for its nodes, such as the number of
available network interfaces. This information is useful when
assigning substrate resources to virtual network components.

Upon resource discovery, the PIP management node signals
individual requests to the substrate nodes, which are handled
by their management domain (Dom0). The prototype supports
two options for node virtualization: (i) the virtual machines are
created and booted on-demand as guest domains (DomUs),
or (ii) the PIP has allocated CPU and memory to virtual
machines in advance, avoiding their creation and booting upon
receiving a VNet request. With the second option, a VNet
can be instantiated very fast; however, physical resources are
wasted when virtual machines remain unused. The prototype
also allows certain configuration options for the instantiated
virtual machines. These options can be part of a VNet request
and mainly include the number of physical interfaces that will
be attached to each virtual node and whether a bridge or Click

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects

will be used for this purpose.
For the inter-connection of the virtual nodes, we currently

use tunnels with IPv4-in-IPv4 encapsulation. However, in
principle our implementation is not limited to IP forwarding,
neither to tunnels. Other link-virtualization mechanisms, such
as MPLS, could be used with our prototype. Further details
on how we set up link virtualization are given in the following
subsection.

After VNet instantiation, the prototype allows for on-
demand configuration and management operations, such as
termination of existing virtual machines, the attachment of
additional physical interfaces, topology modifications and mi-
gration of virtual machines from one physical node to another.

C. Implementation Details

We hereby refer to some details behind our implementa-
tion. Fig. 4 provides a more detailed view of a substrate
node, illustrating the interaction between the management (i.e.,
Dom0) and the guest domains (i.e., DomUs). Dom0 acts as
the driver domain for the physical hardware, including the
network interface cards (NIC). Xen splits a NIC driver into
a front-end and back-end driver. The front-end resides in the
kernel space of the guest operating system (i.e. in DomUs)
while the back-end is part of the Dom0 kernel. Each portion
of the network driver creates a corresponding virtual device
interface, as shown in Fig. 4. The device interfaces in Dom0
are represented asvifX.Y, where X and Y correspond to the
unique domain and interface IDs, respectively. Each DomU
includes a front-end interface which essentially appears as
a real network interface (i.e., ethY) in the particular guest
domain. Xen creates I/O channels between a Dom0 and each
instantiated DomU connecting their corresponding back-end
and front-end interfaces. In this sense, any packet sent through
the back-end interface appears as being received by the front-
end device in the DomU and vice versa. Upon creating an I/O
channel, Xen bridges the respective back-end interface onto a
physical NIC.

The standard Xen configuration results in bridging all the
existing back-end interfaces (that correspond to separate Do-
mUs) onto a single physical NIC. Such configuration may be
undesirable due to the complexity incurred by sharing a single
NIC among multiple DomUs. Furthermore, a misconfiguration
in packet forwarding may cause packets traversing the shared
bridge to be intercepted by any DomU that uses the same
bridge. The prototype provides the flexibility of attaching
separate NICs per DomU. In this case, the management
domain configures an additional pair of front-end and back-
end interfaces and subsequently creates a Xen I/O channel
to establish their communication. This automated process is
concluded by bridging the back-end interface onto an available
NIC. Therefore, packets generated by a guest domain easily
find their way to the physical network while incoming packets
can be also received by the DomU. Alternatively, we provide
the option of packet forwarding between a pair of front-end
and back-end interface using Click, in the case where bridging
is not desired.

Upon receiving a request for terminating a guest domain
which communicates with the preceding configuration, Dom0
destroys all corresponding device interfaces along with the
bridge (or alternatively removes Click instances) and the I/O
channel, relinquishing the NIC for the instantiation of a new
guest domain. On the arrival of a migration request and in the
presence of such configuration, the virtual machine is moved
from one physical node to another as follows:

1) Xen is instructed to migrate the virtual machine to the
new host.

2) The virtual devices, I/O channel and the required bridge
are re-created in the new host.

3) The configuration in the previous host is not needed and
therefore it is removed.

The prototype should achieve instant and transparent migra-
tion of virtual nodes, upon a request handed by the VNO or
a load-balancing mechanism within the substrate. To prevent
unnecessary delays when seeking the location of a virtual
machine in a large number of substrate nodes we extended
Xen with the capability of discovering the physical node that
hosts a particular virtual machine.

The substrate topology is constructed by configuring
VLANs in the HEN switch. This process is automated via a
switch-daemon which receives VLAN requests and configures
the switch accordingly. In reality, this step is not required,
since each PIP provides a physical network topology on top
of which a VNet (or part of it) can be directly mapped.

Virtual links are set up by encapsulating and demultiplexing
packets, as shown in Fig. 5. More precisely, each virtual
node uses its virtual interface to transmit packets, which are
captured by Click for encapsulation, before being injected to
the tunnel. On the receiving host, Click demultiplexes the
incoming packets delivering them to the appropriate virtual
machine. Substrate nodes that forward packets consolidate all
Click forwarding paths in a single domain (Dom0) avoiding
costly context switches; hence, the achievable packet forward-
ing rates are very high [5]. In all cases, Click runs in kernel
space.

V. EVALUATION

In this section, we demonstrate experimental results that
show the efficiency of the prototype implementation and give
an early glimpse on the feasibility of the VNet architecture. In
particular, we evaluate (i) VNet instantiation and (ii) packet
forwarding performance. At the same time, we demonstrate
the performance of low-cost commodity hardware as network
devices. In the near future, we believe that more ISPs will re-
place expensive routers in their access or aggregation network
with PC hardware which already exhibits good forwarding
performance and scaling properties. For our experimentation,
we use Dells PowerEdge 2950 with specifications as described
in Section IV-A. We use separate nodes for the PIP (including
the management node), the VNP and the VNO.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects

Fig. 5. Virtual Links on the Prototype

A. VNet Instantiation

The instantiation of VNets composes a critical procedure
for this architecture. With resource discovery being an
important element in virtualized environments, we consider
the following scenarios:

1) Discovery at PIP: The VNP is not aware of the substrate
resources and the PIP maps the requested VNet to the
substrate.

2) Discovery at VNP: The PIP advertises its physical
resources and subsequently, the VNP determines how
the requested VNet will be mapped to the substrate.

Initially, we measure the time required to instantiate the
VNet of Fig. 6, including resource discovery, the creation
and booting of virtual machines, setting up the tunnels and
console access to the virtual nodes. Table I provides the corre-
sponding measurements for both resource discovery scenarios.
Our results reveal that, in both cases, instantiation times are
reasonable, with most time being spent within the PIP.

TABLE I

VNET INSTANTIATION TIME (SEC)

min avg max stddev
Resource discovery at PIP 103.38 109.47 119.27 4.43

Resource discovery at VNP 104.08 110.37 120.79 4.27

With resource discovery within VNP, instantiation is slightly
slower, since further interactions between the VNP and the PIP
are required. More precisely, the PIP management node has to
communicate its resources to the VNP, which in turn initiates

Fig. 6. Experimental Topology.

the mapping and subsequently instructs the PIP how to assign
physical resources to virtual network components.

So far, VNet instantiation is dominated by the time re-
quired to create and boot virtual machines. As mentioned
in Section IV-B, our prototype provides the flexibility to
allocate CPU and memory resources to virtual machines in
advance and hence assign them to a VNet upon its request.
Table II contrasts VNet instantiation times with pre-allocated
virtual machines to the respective instantiation times with on-
demand creation (from Table I). It is clear that virtual machine
pre-allocation results in remarkably faster VNet instantiation
unfolding the potential of the VNet architecture.

TABLE II

VNET INSTANTIATION TIME (SEC)

min avg max stddev
On-demand VM creation 103.38 109.47 119.27 4.43

VM Pre-allocation 15.72 16.75 17.59 0.41

We further use OProfile [14] to monitor CPU utilization for
the substrate nodes and VNP during VNet instantiation. Table
III shows the corresponding measurements with on-demand
virtual machine creation and resource discovery at the PIP.
According to these results, our prototype implementation does
not impose an unreasonable overhead either to the substrate
or the VNP. We have also obtained similar measurements with
the rest of instantiation scenarios discussed above. Although
these results are specific to our implementation, they show that
VNet instantiation is technically feasible.

TABLE III

%CPUDURING VNET INSTANTIATION

min avg max stddev
VNP 20.38 23.45 25.49 1.52

Substrate Node 16.33 19.15 22.61 2.05

B. Packet Forwarding Performance

We hereby assess the packet forwarding performance
achieved by our virtualized data planes. Our primary goal is
to show that virtual data planes do not impose considerable
restrictions in terms of packet forwarding when the right
design is followed. Recall that all forwarding paths are consol-
idated in Dom0, which therefore acts a common forwarding
domain. Fig. 7 demonstrates aggregated forwarding rates with

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

R
ec

ei
ve

d
P

ac
ke

t R
at

e
(M

pp
s)

Generated Packet Rate (Mpps)

6 flows
5 flows
4 flows
3 flows
2 flows
1 flow

(a) 64-byte packets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

R
ec

ei
ve

d
P

ac
ke

t R
at

e
(M

pp
s)

Generated Packet Rate (Mpps)

6 flows
5 flows
4 flows
3 flows
2 flows
1 flow

(b) 1500-byte packets

Fig. 7. Aggregated Packet Forwarding Rates.

1 to 6 unidirectional flows and 64- and 1500-byte packets.
In each case, packet forwarding involves an IP lookup. The
experiments were conducted on a Dell PowerEdge 2950 with
12 physical interfaces and 8 CPU cores, with each flow
assigned to separate interfaces and cores.

According to Fig. 7(a), the aggregated forwarding rate for
6 flows and 64-byte packets nearly reaches 5 Mpps, which
is remarkable for non-specialized hardware. The forwarding
performance scales well up to 4 forwarding paths; from
this point, memory access latency limits forwarding rates. A
thorough exploration of this performance bottleneck can be
found in [5].

Forwarding large packets allows us to evaluate both for-
warding performance (Fig. 7(b)) and link utilization (Fig. 8).
In this case, forwarding rates scale perfectly with the number
of forwarding paths, while the throughput achieved always
reaches the line rate, resulting in full utilization of the available
bandwidth.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we initially presented an overview of the
4WARD VNet architecture uncovering which technological
ingredients are necessary for its implementation and how they
have to be combined to provision and operate VNets. Our

main contribution is the implementation of the architecture
prototype which realizes the instantiation and on-demand
configuration of multiple VNets on top of the shared physical
infrastructures. We further presented experimental results with
our prototype showing that the instantiation of VNets is techni-
cally feasible. Our measurement results also demonstrate that
virtualized data planes on commodity hardware are capable of
fulfilling the forwarding requirements of aggregation routers
in the access part of an ISP’s network and thus providing a
serious and inexpensive alternative to commercial routers.

After studying the feasibility of VNet instantiation, our
implementation can be used to provide insights into the archi-
tectural design decisions and help understand the advantages
and disadvantages of them. For example, did we actually create
the right tussle boundaries? What are the trade-offs between
technological constraints and business goals? We further plan
to investigate the timescales on which VNets can be requested
or provisioned. Future work also includes the enhancement of
our resource description language.

VII. ACKNOWLEDGMENTS

We are thankful to 4WARD partners and Mickaël Hoerdt
for useful discussions and comments on this work.

Part of this work was performed within the 4WARD project,
which is funded by the European Union in the 7th Framework
Programme (FP7).

REFERENCES

[1] 4WARD Project, http://www.4ward-project.eu.
[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R.Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualiza-
tion”, in Proc. 19th ACM Symposium on Operating Systems Principles,
Bolton Landing, NY, USA, October 2003.

[3] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In
VINI Veritas: Realistic and Controlled Network Experimentation”, in
Proc. ACM SIGCOMM ’06, Pisa, Italy, September 2006.

[4] D. Clark, J. Wroclawski, K.R. Sollins and R. Braden, “Tussle in
Cyberspace: Defining Tomorrow’s Internet”, inProc. ACM SIGCOMM
’02, Pittsburgh, USA, August 2002.

[5] E. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy,
“Towards High Performance Virtual Routers on Commodity Hardware”,
in Proc. ACM CoNEXT 2008, Madrid, Spain, December 2008.

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6

T
hr

ou
gh

pu
t (

G
bp

s)

Number of flows

Fig. 8. Throughput with 1500-byte packets.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects

[6] FIND: Future Internet Design, http://www.nets-find.net/.
[7] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic Routing

Encapsulation (GRE)”, RFC 2784, IETF, March 2000.
[8] Heterogeneous Experimental Network, http://hen.cs.ucl.ac.uk.
[9] R. Housley and S. Hollenbeck, “EtherIP: Tunneling Ethernet Frames in

IP Datagrams”, RFC 3378, IETF, September 2002.
[10] A Kivity, Y Kamay, D Laor, U Lublin, and A Liguori, “KVM: The

Linux Virtual Machine Monitor”, inProc. Linux Sysmposium, Ottawa,
Canada, 2007.

[11] E. Kohler, R. Morris, B. Chen, J. Jahnotti, and M. F. Kasshoek, “The
Click Modular Router”,ACM Transaction on Computer Systems, Vol.
18, No. 3, 2000, pp. 263–297.

[12] Linux-VServer Project, http://www.Linux-VServer.org.
[13] OpenVZ Project, http://www.openvz.org.
[14] OProfile, http://oprofile.sourceforge.net.
[15] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A Blueprint for In-

troducing Disruptive Technology into the Internet”, inACM SIGCOMM
Computer Communication Review, Vol. 33, No. 1, January 2003, pp.
59–64.

[16] S. Ratnasamy, S. Shenker, and S. McCanne, “Towards an Evolvable
Internet Architecture”, inProc. ACM SIGCOMM ’05, New York, NY,
USA, 2005.

[17] E. Rosen and Y. Rekhter, “BGP/MPLS VPNs”, RFC 2547, IETF, March
1999.

[18] J. Touch and S. Hotz, “The X-bone”, inProc. 3rd Global Internet Mini-
Conference at Globecom ’98, Sydney, Australia, November 1998

[19] A. Whitaker, M. Shaw, and S. D. Gribble, “Scale and Performance in the
Denali Isolation Kernel”, inProc. 5th Symposium on Operating System
Design and Implementation, Boston, MA, USA, December 2002.

[20] Y. Zu, R. Zhang-Shen, S.Rangarajan, and J. Rexford, “Cabernet: Con-
nectivity Architecture for Better Network Services”, inProc. ACM
ReArch ’08, Madrid, Spain, December 2008.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects

