
Routing in Content Addressable Networks:
Algorithms and Performance

Alexandru Popescu†‡, David Erman†, Markus Fiedler† and Demetres Kouvatsos‡

† Dept. of Telecommunication Systems
School of Engineering

Blekinge Institute of Technology
371 79 Karlskrona, Sweden

‡ Dept. of Computing
School of Informatics
University of Bradford

Bradford, West Yorkshire BD7 1DP, United Kingdom

Abstract—
Over the last years, virtual networking has evolved towards

becoming a dominant platform for the deployment of new
services and applications such as large-scale data sharing, mul-
timedia services, application-level multicast communication. A
consequence of this evolution is that features like robust routing,
efficient search, scalability, decentralization, fault tolerance, trust
and authentication have become of paramount importance.

Since network virtualization basically represents the process of
combining resources of different types, two distinct aspects stand
out. The first aspect is virtualization of hardware on network
entities, while the second being in essence a virtualized network
such as an overlay network. In this context, overlay networks act
as enablers by providing the addressing and routing substrates
needed to implement a virtualized network structure.

In this paper, we focus on the second aspect of network
virtualization and consider the specific case of structured over-
lay networks with a particular focus on Content Addressable
Networks (CAN). An investigation of the existing approaches for
structured P2P overlay networks is provided, where we point
out their advantages and drawbacks. The essentials of CAN
architecture are presented and based on that, we report on
the implementation of a CAN simulator. Our initial goal is to
use the simulator for investigating the performance of the CAN
with focus on the routing algorithm. Preliminary results obtained
in our experiments are reported as well. The results indicate
that greedy routing algorithms perform better than non-greedy
algorithms.

I. INTRODUCTION

Over the last years, the Internet has been the place of
tremendous technology success, which now enable larger
access to information, provide new ways of communication
among people and organizations and fundamentally change our
way to work and to learn. At the same time, this success is now
revealing the fundamental limitations of the current Internet
design, with negative consequences on future networking
applications and services. While many efforts have been done
on the development of new services and applications, little has
been done on deploying these facilities in the Internet at large.
The Internet is simply requested to allow the co-existence
of different designs and services in the same architectural
framework. This is however not the best solution. Problems
like, e.g., inappropriate security and trust, inefficient mobility
handling, lack of support for multi-homing and difficulties in

the deployment of content-centric networking, have revealed
the need for further efforts to de-ossify the Internet and to
allow users take full advantage of the new applications. For
instance, the well-known difficulties related to the deployment
of relatively modest architectural changes like IPv6, indicate
the strong need for further research and development efforts
to solve these problems.

Network virtualization basically represents the process of
combining resources of different types like, e.g., hardware,
software, services, into a single administrative entity. The
diverse types of network resources are used in this case
through a logical segmentation of the physical network.

The notion of network virtualization is rather new, and no
clear consensus has been reached on the actual definition of
the term. However, two complementary aspects of the term can
be observed in the current literature. The first aspect focuses
on the virtualization of the hardware on network entities,
such as routers and gateways. This type of virtualization
has typically been used to provide virtual server capacity
on existing hardware, using software such as VMware or
XEN [3]. In the second aspect, a virtualized network is in
essence an overlay network, which imposes a new networking
substrate on top of already existing ones. The most obvious of
this type of virtual network are the P2P networks that appeared
in the late 1990’s. In this paper, we focus on the latter, overlay
network, aspect of network virtualization.

Network virtualization is an interesting solution for ad-
dressing the problem of Internet ossification. Multiple virtual
networks may co-exist on top of a shared substrate. Virtual
networks can be implemented by diverse virtual elements like,
e.g., virtual routers connected by virtual links. The recent
emergence of high performance processors have had as a
consequence that network elements like virtualized routers can
now be built with performance comparable to conventional
routers at the advantage of greater flexibility. In this context,
overlay networks act as enablers by providing the addressing
and routing substrates needed to implement a virtualized
network structure. Overlay networks, in the form of P2P
networks, have become very popular over the last years due
to features that make them suitable for the development or
deployment of new services like overlay multicast communi-

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



cation, large-scale data sharing and content distribution.
P2P networks exhibit three fundamental features: self-

organization, symmetric communication and distributed con-
trol [10]. The self-organized routing can be implemented in
two ways: in a structured or unstructured fashion. Structured
P2P networks are subject to a logical structure governing the
network formation, and are ofted implemented in the form
of Distributed Hash Tables (DHTs), providing both routing
and addressing. One such structured overlay network is Con-
tent Addressable Networks (CANs), combining location and
content in the addressing scheme. This makes it an interesting
prospect for use in virtualized networks, in particular for data-
intensive networks. Given this background, this paper will
focus on the performance of routing in a CAN, in order to
evaluate it as an enabler for routing in virtualized networks.

This paper is structured as follows. In Section II we provide
a short overview of the state of the art research in P2P systems.
This is followed in Section III by a description of how CAN
work. Our own implementation of the CAN routing protocol
along with simulation results are described in Sections IV and
V respectively. Finally, in Section VI we present some brief
conclusions and ideas for future work.

II. ROUTING IN P2P SYSTEMS

P2P systems have been shown to be an efficient platform
for developing scalable and robust distributed applications.
Facilities like diversity of concepts, direct access among
distributed computers, sharing of computer resources by direct
exchange, self-organizing facilities and decentralized resource
administration make them very attractive for virtual network-
ing. Today, some of the most important issues related to P2P
systems are related to naming, indexing, routing, congestion
control and security [14].

There are two main classes of P2P networks with reference
to the routing substrate, namely unstructured networks and
structured networks [1]. Unstructured networks, also called
”first generation” P2P networks, use flooding and random
walks for routing. Better solutions have therefore been de-
veloped to alleviate the large overhead traffic by, e.g., using
super-peers, clustering, selective forwarding or a combination
thereof. Typical examples are Gnutella and Kazaa. The un-
structured networks have the main advantage in their simplic-
ity but this is associated with serious drawbacks like large
routing costs and difficulties in providing scalability when
handling increased rates of aggregate queries or when the
system size increases.

On the other hand, structured networks, also called ”second
generation” P2P networks, typically use Distributed Hash
Table (DHT) routing schemes to reduce the routing cost and to
provide a bound on the number of hops required for localizing
a target data item [2]. Such systems have important advan-
tages like, e.g., decentralization, scalability, availability, short
routing distances and fault tolerance. DHT routing is based
on the concept of prefix-based routing initially introduced by
Plaxton to accommodate dynamic join/departure of peers and
to provide failure-recovery mechanisms [13]. In other words,

structured P2P networks means that the P2P network topology
is tightly controlled and data objects are placed at specific
locations selected such as to obtain better query performance.

Examples of such networks are Plaxton, Pastry, Tapestry,
Chord and CAN, which are employing different DHT routing
algorithms [10], [17]. Graph-theoretic properties are used to
determine and to improve the efficiency of such systems [9],
[15], [16]. Typically, such graphs are of Θ(log n) diameter and
show Θ(log n) degree at each node, where n is the number
of peers in the system. CAN however has a different perfor-
mance profile, as it chooses the keys from a d-dimensional
Cartesian space, as discussed in Section III. CAN nodes have
Θ(2d) neighbors and the pathlengths are of Θ(d/4)(n1/d)
hops. However, in the case of logarithmic CAN, i.e., when
d = log n, CAN shows similar properties like the other
networks, i.e., Θ(log n) diameter and Θ(log n) degree at each
node.

A serious problem of structured systems is related to churn,
with serious impact on the network performance. Other draw-
backs are significantly higher overheads, the lack of support
for keyword searches and complex queries. However, recent
efforts towards the development of a unification platform for
different DHT-systems are making structured networks more
and more attractive [2], [7], [14]. Such a platform is expected
to provide a API based on the KBR (Key-Based Routing)
concept as described in [2], coupled with a basic DHT service
model to easily deploy DHT-based applications.

Another important issue is regarding the query mechanisms
used in P2P systems and ways to optimize them. A query
mechanism is used to construct efficient searches from user
input. There are several query systems existing today, e.g.,
range queries, multi-attribute queries, join queries and aggre-
gation queries, each of them with their own advantages and
drawbacks [17]. The challenge in this case is to develop new
models for query optimizations for large networks in the order
of thousands and tens of thousands of servers and millions of
clients [8].

The fundamental criteria for developing efficient DHT rout-
ing algorithms is to provide the best tradeoff with reference
to a set of measures like, e.g., routing efficiency, resilience
to node failure, routing hot spots and geography-based per-
formance [9], [15], [16]. Other measures like, e.g., minimum
resource consumption, are important as well, particularly in
the case of mobile ad-hoc networks. Routing efficiency refers
to the best tradeoff of minimizing the routing pathlength in
combination with the associated state. Related to this, we
have implemented four different CAN routing algorithms and
their implementation and performance is reported in our paper.
Resilience to node failures demands for a rather sophisticated
analysis, where diverse aspects need to be analyzed like,
e.g., static resilience, resilience time and cost. Routing hot
spots refers to the efficiency of diverse schemes suggested for
solving this problem. Geography-based performance refers to
the analysis of real-world systems as well as developing of
efficient algorithms to reduce the end-to-end latency.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



III. CAN ESSENTIALS

CAN is a distributed Internet-scale hash table designed to
map file names to a specific network location. It is a robust,
scalable, and decentralized system designed for efficiently
locating data stored in a DHT [14]. The key space in a
CAN is an n-dimensional Cartesian coordinate space, which
wraps around the edges of each dimension, thus creating a
n-dimensional torus geometry. For the experiments presented
in this paper, we have used a 2-dimensional coordinate space
using the x, y coordinates.

Every node in the CAN is identified by a point P in
the key space. Additionally, the node is responsible for its
own zone, which is a rectangular portion of the key space
that surrounds the point P . The node has information about
adjacent zones and their responsible nodes. Nodes route
messages in the CAN overlay using only information about
neighboring nodes and their corresponding zones. Since the
CAN space is a 2-dimensional coordinate grid, this becomes
a matter of routing along the shortest path which in this case
is a straight line between two points. The construction of a
CAN overlay consists of three steps: bootstrapping, finding
a zone and joining the overlay routing. These correspond to
the functions1 BOOTSTRAP, FINDZONE and JOINROUTING
outlined in Algorithm 1.

The purpose of bootstrapping is to enable the node to
find the IP address of an existing CAN node. In the initial
proposal of CAN [15], a particular bootstrapping procedure is
not defined, but the authors suggest a solution similar to that
used in YOID [5]. This means that a DNS lookup of a CAN
domain will reveal the IP address of a bootstrap node (a.k.a.
rendezvouz point). The bootstrap node is then used to obtain
a set of IP addresses corresponding to active CAN nodes.

After successfully completing the bootstrap procedure, the
joining node must find its own zone. To do this, the node
randomly picks a node b from the list supplied by the bootstrap
node, and a coordinate on the x-axis one on the y-axis and
assigns the values to the point P . P then implicitly becomes
the identifier of the joining node.

The new node then tries to find a zone in the CAN, which
contains P . To do this, it assembles a JOIN message and asks
node c to route it towards point P . Upon receiving the JOIN
message, node p, which is responsible for the zone where P
belongs, executes the GETZONE procedure. The result of the
procedure is the division of p’s zone into two equal parts,
where p keeps one part and relinquishes the other, Z, to the
new node. The procedure returns Z together with the set of
neighbors, N , responsible for zones adjacent to Z.

When the new node has found its zone, all nodes in the
system send an immediate update to their neighbors to inform
them if any change has occurred in their zone. This is followed
by periodic update messages where similar information is
exchanged.

1Procedure names preceded by a variable name and a dot indicate remote
function calls (e.g., n.LOOKUP means that node n executes the LOOKUP
function).

Algorithm 1 CAN construction
1: S ← BOOTSTRAP
2: c← RAND(S)
3: P ← RAND(X,Y)
4: Z,N ← FINDZONE(c, P )
5: JOINROUTING(N )

6: procedure BOOTSTRAP
7: Contact a DNS server d
8: b← d.LOOKUP(CAN domain) . bootstrap node
9: c← b.GETCANNODES . set CAN nodes

10: return c
11: end procedure

12: procedure FINDZONE(c, P )
Route JOIN message towards point P via node c

13: Z,N ← p.GETZONE . P is in p’s zone
14: return Z,N
15: end procedure

16: procedure JOINROUTING(N)
17: Send soft updates to all nodes N
18: end procedure

19: procedure LOOKUP(domain)
20: Lookup IP address ip associated with domain
21: return ip
22: end procedure

23: procedure GETCANNODES
24: return subset of known CAN nodes
25: end procedure

26: procedure GETZONE
27: Give up half of own zone, Z, to calling node
28: Collect the set N of neighbors to half-zone Z
29: return Z,N
30: end procedure

If a node leaves the CAN, one of its neighbors assumes
responsibility of the leaving node’s zone. Zone information is
then refreshed during periodic routing updates. The absence
of routing messages from a neighbor is taken as an indication
of a node failure, and a takeover mechanism is initiated. The
purpose of the takeover mechanism is to re-assign the zone of
the failed node to one of its neighbors in a consistent manner,
i.e., preventing several nodes from simultaneously attempting
to take over the zone [15].

IV. IMPLEMENTATION OF CAN ROUTING

We have implemented the CAN construction algorithm as
well as several routing algorithms. Our implementation creates
a 2-dimensional [0, 1] × [0, 1] coordinate space for the CAN.
The first node to join the CAN becomes the owner of the
entire CAN space and it is assigned the coordinates {0,0}.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



Additionally, it is selected as bootstrap node. This is just a
matter of convenience and has no impact on anything else
other than the bootstrapping procedure.

As previously mentioned, if the random point P is not
located within the zone owned by the bootstrapping node, then
a JOIN request must be routed through the CAN. Starting from
the bootstrap node, the routing operation is accomplished by
attempting to follow a straight line through the Cartesian space
from source to destination. This is done by one of the four
implemented CAN routing algorithms explained below. In a 2-
dimensional coordinate space two nodes are neighbors if their
coordinate spans overlap along one dimension and abut along
the other dimension. In the current CAN implementation,
the routing operation always starts from the bootstrap node
located at the origo in the coordinate space. For each node
on the path, the algorithm computes the extremities of each
neighbor zone to find the one with the shortest distance to
P conforming to the currently used routing algorithm. For
each neighbor zone the distance to P is computed from eight
different points: four of them are the zone corners and the
remaining four are the middle points on each zone border.
The neighbor, whose zone contains the point with the shortest
distance to P , is a candidate for the next hop on the path. To
avoid loops, the algorithm never selects the same node twice.
Therefore, if a candidate is already an intermediate node on the
path, the algorithm selects the next eligible candidate. When
the number of CAN nodes grows, zones become rectangular
areas of different sizes. In this scenario, there is an increasing
probability that the algorithm will become trapped in a zone
where all neighbor nodes are already intermediate nodes on
the path. In such a case the routing algorithm enters a recovery
mode that forces the JOIN message to backtrack its steps one
at a time. For each step back all the neighbors of the node at
that particular step are checked for an alternative path towards
the destination. The recovery mode continues until a valid path
is found.

Efficient routing is a critical aspect of every CAN im-
plementation. Today, a number of CAN routing algorithms
are available. The goal of our research is to implement and
evaluate the performance of several important algorithms. To
the best of our knowledge, the routing algorithms can be
partitioned as follows [4], [14]–[16]:

• Pythagorean based algorithm
• Greedy forwarding along the x- and y-axes
• Greedy forwarding with shortcut nodes
• Inclination angle based algorithms
• Binary based routing
Out of these, we have implemented and evaluated the

performance of the first four algorithms, which are reported
in our paper.

A. CAN routing algorithm 1: Pythagorean based algorithm

This algorithm utilizes the Pythagorean theorem, calculating
the shortest distance (hypotenuse) to the destination, as shown
in Algorithm 2. This is done for each and every node along
the path, only selecting the nodes with the shortest distance

towards the destination as next hop. Note, however, that
the Pythagorean based straightest path is not necessarily the
shortest path.

Algorithm 2 CAN routing algorithm 1

1: procedure ROUTE(c, P )
Route JOIN message through CAN towards point P via
node c, return owner p of point P

2: if P ∈ c then . Is P in c’s neighbors n
3: p← n . Set n as current node p
4: else . P is not in origo node c’s zone

Owner of zone where point P lie needs to be found
5: p← c . Current node is set to p
6: while P 6= p do . Until owner to P is found

Check all neighbors n of current node p for shortest
distance to point P

7: d← sqrt((Px2− nx2) + (Py2− ny2))
Px,Py is x,y for point P , nx,ny is x,y for neighbor n
Neighbor n with shortest distance d is next hop on path
to destination

8: p← n . New current node p
9: end while

10: end if
11: Point P is in current node p’s zone, return p
12: return p
13: end procedure

B. CAN routing algorithm 2: Greedy forwarding along the x-
and y-axes

This algorithm routes along the x and y dimensions towards
the destination, using the identifiers (x,y coordinates) of the
bootstrap node and the joining node respectively, as shown in
Algorithm 3. Reaching the destination becomes a matter of
continuously evaluating the delta value, d, while progressing
first along the x and then y dimensions until the destination
identifier is reached.

C. CAN routing algorithm 3: Greedy forwarding with shortcut
nodes

This algorithm performs the routing operation in much
the same way as the previous algorithm, however with an
important difference. Here the notion of shortcut zones is intro-
duced, significantly decreasing the path length by minimizing
the routing distances, as shown in Algorithm 4. The CAN
Cartesian space is equally shared among four nodes in every
corner of the grid. Each node is responsible for a quarter of
the Cartesian space. Depending on the identifier of the new
node joining the CAN overlay, the bootstrap node (keeping a
list of all the current shortcut nodes) sends the new joining
node to the shortcut node with the coordinates closest to the
joining node identifier.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



Algorithm 3 CAN routing algorithm 2

1: procedure ROUTE(c, P )
Route JOIN message through CAN towards point P via
node c, return owner p of point P

2: if P ∈ c then . Is P in c’s neighbors n
3: p← n . Set n as current node p
4: else . P is not in origo node c’s zone

Owner of zone where point P lie needs to be found
5: p← c . Current node is set to p
6: while P 6= p do . Until owner to P is found
7: while Px 6= nx do . Find P ’s x value

Check all neighbors n of current node p for shortest
distance to point P ’s, x coordinate

8: d← (Px− nx) . Px, is x for point P
Neighbor n with shortest distance d is next hop on path
to destination

9: p← n . New current node p
10: end while
11: while Py 6= ny do . Find P ’s y value

Check all neighbors n of current node p for shortest
distance to point P ’s, y coordinate

12: d← (Py − ny) . Py, is y for point P
Neighbor n with shortest distance d is next hop on path
to destination

13: p← n . New current node p
14: end while
15: end while
16: end if
17: Point P is in current node p’s zone, return p
18: return p
19: end procedure

D. CAN routing algorithm 4: Inclination angle based algo-
rithms

This algorithm routes according to a specific concept based
on the inclination (angle), as shown in Algorithm 5. The angle
between the bootstrap node from where the routing starts
and the destination node is first calculated. Then, the angle
to the destination of every node along the path is computed
and compared with the original start to destination angle. The
node with the destination angle closest to the starting angle
becomes the next hop on the path towards the destination. By
selecting the next hop with the smallest difference in angle
compared to the original starting angle, the straightest path to
the destination should be achieved. Observe however that the
straightest path does not necessarily mean the shortest path.

V. ROUTING PERFORMANCE

One of the most fundamental parameters deciding the CAN
routing performance is how often the routing algorithm enters
the recovery mode. This in turn, influences several important
parameters like, e.g., routing pathlength, routing time, and
scalability performance. In order to evaluate this, we have
done a number of experiments and evaluated the mean number

Algorithm 4 CAN routing algorithm 3

1: procedure ROUTE(c, P )
Route JOIN message through CAN towards point P via
node c, return owner p of point P

2: if P ∈ c then . Is P in c’s neighbors n
3: p← n . Set n as current node p
4: else . P is not in origo node c’s zone

Check shortcut nodes s of origo node c to find the one
closes to point P , set closest as new current node

5: p← s . Current node is set to p
6: while P 6= p do . Until owner to P is found
7: while Px 6= nx do . Find P ’s x value

Check all neighbors n of current node p for shortest
distance to point P ’s, x coordinate

8: d← (Px− nx) . Px, is x for point P
Neighbor n with shortest distance d is next hop on path
to destination

9: p← n . New current node p
10: end while
11: while Py 6= ny do . Find P ’s y value

Check all neighbors n of current node p for shortest
distance to point P ’s, y coordinate

12: d← (Py − ny) . Py, is y for point P
Neighbor n with shortest distance d is next hop on path
to destination

13: p← n . New current node p
14: end while
15: end while
16: end if
17: Point P is in current node p’s zone, return p
18: return p
19: end procedure

of routing failures per node. Accordingly, two experiments
have been done for each of the four implemented routing
algorithms. In both experiments we start with an empty CAN.
Then we add up to 100 nodes to the CAN in the first
experiment, and up to 1000 nodes to the CAN in the second
experiment. For each added node n, we keep a variable an

that counts the number of times the routing algorithm enters
the recovery mode for that particular node. We run each
experiment 100 times and compute the average number of
times each node n enters the recovery mode. We call this
statistic mean number of routing failures per node n and we
denote it by An. More formally:

An =
1

100

100∑
r=1

an,r , (1)

where an,r indicates the number of times the node n enters
recovery mode during simulation run r.

The figures 1 and 2 show the mean number of routing
failures per node for 100 nodes and 1000 nodes, respectively. It
is observed that the variation of the plots is highly fluctuative.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



Algorithm 5 CAN routing algorithm 4

1: procedure ROUTE(c, P )
Route JOIN message through CAN towards point P via
node c, return owner p of point P

2: if P ∈ c then . Is P in c’s neighbors n
3: p← n . Set n as current node p
4: else . P is not in origo node c’s zone

Owner of zone where point P lie needs to be found
5: dx← (Px− cx) . x for c and P
6: dy ← (Py − cy) . y for c and P
7: d← (dy/dx) . Angle for c and P
8: p← c . Current node is set to p
9: while P 6= p do . Until owner to P is found

Check all neighbors n of current node p for closest angle
to destination angle d

10: ax← (Px− nx) . x for n and P
11: ay ← (Py − ny) . y for n and P
12: a← (ay/ax) . Angle for n and P

Neighbor with angle a closest to angle d is next hop on
path to destination

13: p← n . New current node p
14: end while
15: end if
16: Point P is in current node p’s zone, return p
17: return p
18: end procedure

This is an indication of how well the algorithms are perform-
ing. Low values indicate that fewer errors are encountered
while routing through CAN. If the sought node is found
without failure, then this makes the curve plummet towards
zero, thus explaining the appearance of dips in the graphs.
This means that low values are indicative of a well performing
algorithm, where many nodes encounter few errors. On the
other hand, a plot with high values indicates a large amount of
nodes encountering errors, indicating bad routing performance.

Fig. 1. Mean number of routing failures per node for 100 nodes

Fig. 2. Mean number of routing failures per node for 1000 nodes

We note that the performance of algorithms 1 (Pythagorean
based algorithm) and 4 (Inclination angle based algorithms)
are highly dependent on the number of nodes. This is an
indication of scalability problems. On the other hand, the
algorithms 2 (Greedy forwarding along the x- and y-axes) and
3 (Greedy forwarding with shortcut nodes) show good routing
performance and, implicitly, good scalability.

TABLE I

Algorithm 1 2 3 4
Amax(100) 2.6 0.9 0.4 13.6
Amax(1000) 66.2 9.3 4.3 520
Increase factor 25.6 10.6 11.9 38.3

Table I shows the maximum of the mean failures encoun-
tered by any node

Amax(N) = max{A1, . . . , AN} (2)

where N denotes the maximum number of nodes in the
corresponding experiment. By comparing Amax(N) for the
different routing algorithms, we immediately recognize that
algorithms 2 and 3 display much smaller failures than algo-
rithms 1 and 4. A badly performing routing algorithm leads
to a large increase in the number of error messages sent back
and forth. In other words a frequently entered recovery mode
entails a high degree of mean failures per node.

By having a closer look at the scaling behaviour of the
algorithms observed in Table I, we can conclude as follows.
In the case of a tenfold increase in the number of nodes (i.e.,
from N = 100 to N = 1000), the scalability performance
is different depending upon the particular algorithm. For algo-
rithm 1 and 4 a tenfold increase in the number of nodes, entails
a respective 26 and 38-fold increase in the maximum mean
failures, indicating clear scalability problems. Thus leading to
the conclusion, that very few nodes can be accommodated by
a CAN employing such a routing algorithm, before a total
failure of the network is encountered. On the other hand, for
the same increase in node number, algorithms 2 and 3 show

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects



good scalability opportunities with a roughly 10-fold increase
in the maximum of mean failures.

Furthermore, the constatation that algorithms 2 and 3,
outperform algorithm 1 and in particular algorithm 4 is also
confirmed by the observed simulation run times. When N =
1000 for algorithms 2 and 3, the run times are in the order of
minutes, though for algorithms 1 and 4, being in the order of
hours and days, respectively.

VI. CONCLUSIONS

Content Addressable Networks are an important part of the
overlay approach to network virtualization. In this paper, we
have reported on the implementation and performance evalua-
tion of several CAN routing algorithms for CAN construction
in a virtual space. These are the Pythagorean based algorithm,
greedy forwarding along the x- and y-axes, greedy forwarding
with shortcut nodes and inclination angle based algorithms.
Their performance has been evaluated in terms of mean failure
rate per node and scalability index. These parameters are
highly decisive in the implementation of CAN networks.

Our results show that greedy based algorithms perform
much better in a CAN network than the Pythagorean based
algorithm and inclination angle based algorithm, although the
last two algorithms follow the straightest path in a mathemati-
cal sense. These results are also confirmed by the simulations
run times which are correlated with the performance of the
specific routing algorithm, e.g., the more routing errors en-
countered the longer simulation times for the same number
of simulated node joins. Furthermore, as a next step in our
future work we plan on performing several more simulations
with an increased number of added nodes. This will allow us
to better estimate the scalability for each specific algorithm,
leading to a more realistic approximation. In the future we
plan to move the CAN implementation into a simulator such
as MyNS [11] or OmNeT++ [12]. Through this we will
gain access to the facilities offered by a complete simula-
tion environment making it possible to study other relevant
parameters, e.g., the CAN’s performance in the presence of
large amounts of churn, scalability, memory requirements. We
are also planning to implement the remaining binary routing
algorithm for CAN routing and compare the CAN performance
to the performance of other structured-based overlays such as
Pastry and Tapestry. Present with the opportunity to investigate
the different pros and cons of CAN we can compared to other
structured overlays and routing algorithms. Another important
future work is to implement the straightest path not only in the
virtual space but also in a real geographical space, taking into
account several important demands such as minimum end-to-
end routing delay.

REFERENCES

[1] Balakrishnan H., Kaashoek F. M., Karger D., Morris R. and Stoica I.,
Looking up data in P2P systems, Communications of the ACM, Vol. 46,
No. 2, pp. 43-48, February 2003.

[2] Dabek F., Zhao B., Druschel P., Kubiatowicz J. and Stoica I., Towards
a Common API for Structured Peer-to-Peer Overlays, 2nd International
Workshop on Peer-to-Peer Systems (IPTPS), Berkeley, CA, USA, Febru-
ary 2003.

[3] Dragovic B., Fraser K., Hand S., Harris T., and A Ho, Xen and the art of
virtualization, SOSP ’03: Proceedings of the nineteenth ACM symposium
on Operating systems principles, 2003, Bolton Landing, NY, USA

[4] Eberspaecher J., Schollmeier R., Zöls S. and Kunzmann G., Structured
P2P Networks in Mobile and Fixed Environments, International Workshop
on Heterogeneous Networks HET-NETs 2004, UK

[5] Francis P., YOID: Extending the Internet Multicast Architecture, un-
published paper, http://www.isi.edu/div7/yoid/docs/yoidArch.ps.gz, April
2000.

[6] Gummadi K. P., Gummadi R., Gribble S. D., Ratnasamy S., Shenker S.
and Stoica I., The Impact of DHT Routing Geometry on Resilience and
Proximity, ACM SIGCOMM, Karlsruhe, Germany, August 2003.

[7] Ilie D. and Popescu Adrian, A Framework for Overlay QoS Routing, 4th
Euro-FGI Workshop, Ghent, Belgium, May 2007.

[8] Kossmann D., The state of the art in distributed query processing, ACM
Computing Surveys, Vol. 32, No. 4, pp. 422-469, December 2000.

[9] Loguinov D., Casas J. and Wang X., Graph-Theoretic Analysis of
Structured Peer-to-Peer Systems: Routing Distances and Fault Resilience,
IEEE/ACM Transactions on Networking, Vol. 13, No. 5, pp. 1107-1120,
October 2005.

[10] Lua E. K., Crowcroft J., and Pias M., Sharma R. and Lim S., A
Survey and Comparison of Peer-to-Peer Overlay Networks Schemes, IEEE
Communications Surveys and Tutorials, Vol. 7, No. 2, pp. 72-93, 2nd
Quarter 2005.

[11] Myns simulator,
http://www.cs.umd.edu/users/suman/research/myns/index.html

[12] OmNeT++ simulator, http://www.omnetpp.org
[13] Plaxton C. G., Rajaraman R. and Richa A. W., Accessing Nearby Copies

of Replicated Objects in a Distributed Environment, ACM SPAA, June
1997.

[14] Popescu Alex, Ilie D. and Kouvatsos D., On the Implementation of
a Content-Addressable Network, 5th International Working Conference
on Performance Modelling and Evaluation of Heterogeneous Networks
(HET-NETs), Karlskrona, Sweden, February 2008.

[15] Ratnasamy S., Francis P., Handley M., Karp R. and Shenker S., A
Scalable Content-Addressable Network, ACM SIGCOMM, San Diego,
CA, USA, August 2001.

[16] Ratnasamy S., Shenker S. and Stoica I., Routing Algorithms for DHTs:
Some Open Questions, 1st International Workshop on Peer-to-Peer
Systems (IPTPS), Cambridge, MA, USA, 2002.

[17] Risson J. and Moore T., Survey of Research towards
Robust Peer-to-Peer Networks: Search Methods, RFC 4981,
http://www.ietf.org/rfc/rfc4981.txt, September 2007.

[18] Yang B. and Garcia-Molina H., Efficient Search in Peer-to-Peer
Networks, ICDCS, Vienna, Austria, July 2002.

20th ITC Specialist Seminar, 18.-20. May 2009, Hoi An, Vietnam

Network Virtualization - Concept and Performance Aspects




