
UOA: User-oriented Addressing for
Slice Computing

Maoke Chen, Akihiro Nakao, Olivier Bonaventure and Taoyu Li

ITC SS on Network Virtualization, Hoi An, VN
May 18 2009

Outline

Background: slice and isolation

Motivation: isolation in native OS

UOA for testbed

UOA for NIRA

Evaluation: challenges in performance

Future work

Slicing = isolation

The importance of isolation
prevent interferences among slivers

make every sliver as a logically complete computer

What is to be isolated?

Namespace identifiers for networking in different layers, root environment

Security data/file accessibility, behavior visibility, etc.

Performance CPU and memory usage, disk quota, bandwidth scheduling

Technology of Isolation

Virtualization

Hypervisor-based (full virtualization)
VMWare: hardware emulation

Xen: para-virtualization, modifying guest OS to apply
hypercalls through Application Binary Interface (ABI)

Advantages

Easy to deploy, support for heterogeneous guest OS

Disadvantages

Heavy overhead, poor performance scalability

Technology of Isolation

Virtualization: instrument of isolation

Container-based
Linux VServer/OpenVZ/FreeBSD Jail/NetNS

Advantage

Lightweight: no overhead of emulation

Drawback

over-engineered! => limitations

conflict with other features (e.g. NetNS vs. sysfs)

difficult code maintenance

PlanetLab EmuLab

A Story

2004: CNGI R&D Project was launched

Experiment platform was required
native IPv6 support

native IPv4 and IPv6 multicast support

Large scale
each project has 3 ~ 15 subtopics of experiment

each experiment should be deployed over more than 25
nodes over the country

A Story

PlanetLab (MyPLC) didn’t support IPv6
nor multicast

until late 2008

due to the engineering in container

Similar but a different thing is needed

which?

Isolation Revisited...

Native OS does also support isolation
to some extent

security
user-oriented file/directory permissions

performance
process-oriented scheduling in CPU time and memory

user-oriented disk quota

attribute-oriented scheduling in traffic reshaping (“tc”)

6PlanetLab

Slicing based on native OS

user identifier (uid) => sliver

optional Xen, to support alien guest OS

Advantage
having all the features supported by native OS

easy to deploy, without extra installation and configuration

Still missing:
network namespace isolation!

User-oriented Addressing

Idea

making sliver from uid

taking native OS exiting facility for security
and performance isolation

adding network namespace isolation for uid

=> change in IP addressing model

IP Addressing Model

Addressing model

defines how Internet addresses are
assigned to entities

Current IPv4 and IPv6 addressing model

IP addresses are assigned to hosts or,
more exactly, to interfaces

Architecture of UOA

Case 1: UOA for Testbed

Assumptions

Existence of a centralized SliceMan

Enough IP address space

Multi-user OS

Root context communicating with SliceMan

Architecture of UOA

Requirements

Uniqueness

spatial MAC-related mechanism (DHCP, auto-conf) fails

Temporal sliver moving among hardware without changing addresses

cannot be fully satisfied without EId/Rloc separation

Behavior traceability vs. privacy

Binary compatibility

Address generation

Network Prefix Interface Identifier

Manageability + Privacy + Uniqueness

Sliver Identifier

Slice Id => uid time_to_assignhash

determined by networking of host
determined by SliceMan

or local admin

Address Assignment
slice user SliceMan node

sliver request (slice_id, time, net_pref, node)

sliver_add
(slice_id, addr) sliver_gen with uid

uid_addr_regADDR_REG

SLIVER_EST
iface_up(addr) iface_addr_addsliver del req (slice_id, addr)

sliver_del(slice_id) uid_addr_del
sliver_del

iface_addr_del
SLIVER_DEL

SLIVER_DEL

Sliver Transfer without changing address

keeping temporal uniqueness

slice user SliceMan
origin
node

target
node

trasfer req
(slice_id, addr,

new_pref,new_node)
sliver_add(slice_id, addr) sliver_gen

uid_addr_regADDR_REG

sliver_cp(addr, new_node)
scp

SLIVER_COPIED

sliver_del(slice_id)

uid_addr_del
sliver_del

iface_addr_del
SLIVER_DEL

SLIVER_TRANSFERRED

iface_up(addr) iface_addr_add

Architecture of UOA

Case 2: fine-grained routing

New trends in routing architecture innovations
involving user control => neutrality (NIRA)

split the role of EId/RLoc (LISP, shim6, ...)

Common idea
leveraging routing by changing address

...but host-level leveraging is not enough

NIRA [Yang03]
AS10 AS20

AS30

AS200 AS300

AS4000
AS5000

AS6000

Core

1:: 2:: 1::1::

3::
1:2::
3:2::

2:3::
3:3::

1:2:4::
3:2:4::
2:3:4::
3:3:4::

2:3:5::
3:3:5::

2:3:5:6::
3:3:5:6::

1:2:4::1

2:3:5:6::3

3:3:4::1

3:3:5:6::3

UOA + NIRA
AS10 AS20

AS30

AS200 AS300

AS4000
AS5000

AS6000

Core

1:: 2:: 1::1::

3::
1:2::
3:2::

2:3::
3:3::

1:2:4::
3:2:4::
2:3:4::
3:3:4::

2:3:5::
3:3:5::

2:3:5:6::
3:3:5:6::

1:2:4::1

3:3:5:6::3

3:3:4::2

3:3:5:6::3

1:2:4::1 3:3:4::2 3:3:5:6::3

Easy to be Implemented?

Changes

Source address check for connect and
bind
 uid -> IP address

Semantics of wild-card address

impacts both port selection and packet dispatching

 socket -> uid

UOA Implementation

Kernel patches

Linux 2.6.x

FreeBSD 5.0

Interfaces

administration tool

procfs view

Performance Concern

Benchmarking tool

netperf

Goal

performance impact of UOA codes in
comparison to vanilla OS

TCP Streaming

1 10 100 1000

0
2
5
0

5
0
0

7
5
0

1
0
0
0

Throughput in TCP_STREAM Test

Number of users

T
h
ro

u
g
h
p
u
t
(M

b
it
s
/s

e
c
)

vanilla

vanilla (saddr spec.)

uoa

uoa (saddr spec.)

1 10 100 1000

0
1
5

3
0

CPU Consumption in TCP_STREAM Test

Number of users

C
P

U
 c

o
n
s
u
m

p
ti
o
n
 (

%
) vanilla

vanilla (saddr spec.)

uoa

uoa (saddr spec.)

UDP Request/Response

1 10 100 1000

0
2
5
0
0

7
5
0
0

Transaction rate in UDP_RR test

Number of users

T
ra

n
s
a
c
ti
o
n
 r

a
te

 (
tr

./
s
e
c
)

vanilla

vanilla (saddr spec.)

uoa

uoa (saddr spec.)

1 10 100 1000

0
1
5

3
0

CPU consumption in UDP_RR test

Number of users

C
P

U
 c

o
n
s
u
m

p
ti
o
n
 (

%
) vanilla

vanilla (saddr spec.)

uoa

uoa (saddr spec.)

UDP Streaming

1 10 100 1000

0
2
5
0

5
0
0

7
5
0

1
0
0
0

Throughput in UDP_STREAM Test

Number of users

T
h
ro

u
g
h
p
u
t
(M

b
it
s
/s

e
c
)

vanilla

vanilla (saddr spec.)

uoa

uoa (saddr spec.)

1 10 100 1000

0
1
5

3
0

CPU Consumption in UDP_STREAM Test

Number of users

C
P

U
 c

o
n
s
u
m

p
ti
o
n
 (

%
) vanilla

vanilla (saddr spec.)

uoa

uoa (saddr spec.)

TCP Connection/Close

1 10 100 1000

0
2
5
0
0

5
0
0
0

Transaction rate in TCP_CC test

Number of users

T
ra

n
s
a
c
ti
o
n
 r

a
te

 (
tr

./
s
e
c
)

vanilla

vanilla (saddr spec.)

uoa

uoa (saddr spec.)

1 10 100 1000

0
1
5

3
0

CPU consumption in TCP_CC test

Number of users

C
P

U
 c

o
n
s
u
m

p
ti
o
n
 (

%
) vanilla

vanilla (saddr spec.)

uoa

uoa (saddr spec.)

Interpretation of Bench.

Wild-card address involves more overheads
(UDP RR)<= port selection goes through all sockets in binding

Repeatedly checking the uid->address
mapping is CPU consuming (UDP STREAM)

Unclosed sockets make things heavier (TCP
CC, due to TCP TIME_WAIT sockets)

O(|U |C(|U |))

O(|V |(1 + ρ(|V |))(C(|U |) + C(|V |))

Improvement

Using hash tables instead of linked list
=> reduce the

Coupling socket hash buckets with
user-oriented assignment information
=> avoid repeated retrievals

C(·)

Conclusions

Philosophy: isolation with commodity
OS plus minimum add-on

making things as built-in as possible
easy deployment and configuration

no conflict with other features

code simplicity for easy maintenance

encourage popular users to join slice

Future Work

Can uid support isolation as much as
possible?

network namespace: UOA + PBR => routing isolation

performance: UOA + tc => bandwidth isolation

performance: cgroup => CPU time isolation/scheduling

......

