

Implementing Network Virtualization for a Future Internet

20th ITC Specialist Seminar on Network Virtualization

Panagiotis Papadimitriou p.papadimitriou@lancaster.ac.uk

In collaboration with

O. Maennel, A. Feldmann (Deutsche Telecom)

A. Greenhalgh (UCL)

L. Mathy (ULancaster)

Introduction

The Internet suffers from ossification:

- Emerging network technologies and services cannot be deployed
- Current architecture hinders innovation

Network Virtualization can be used to overcome this impasse:

- **Multiple** network instances can **coexist** on top of shared physical infrastructures
- Each VNet can be **tailored** to the **needs** of a specific service (upon a **Service Provider** VNet request)

Network Virtualization allows for:

- Abstraction
- Resource Sharing

Basic **requirements** for a Network Virtualization Architecture:

- **Resource / Topology** Description
- **Fast** provisioning of functional VNets
- Isolation among VNets
- Management access to the virtualized nodes

Outline

4WARD Network Virtualization Architecture

- Roles and Actors
- Virtual Network Instantiation

Prototype Implementation

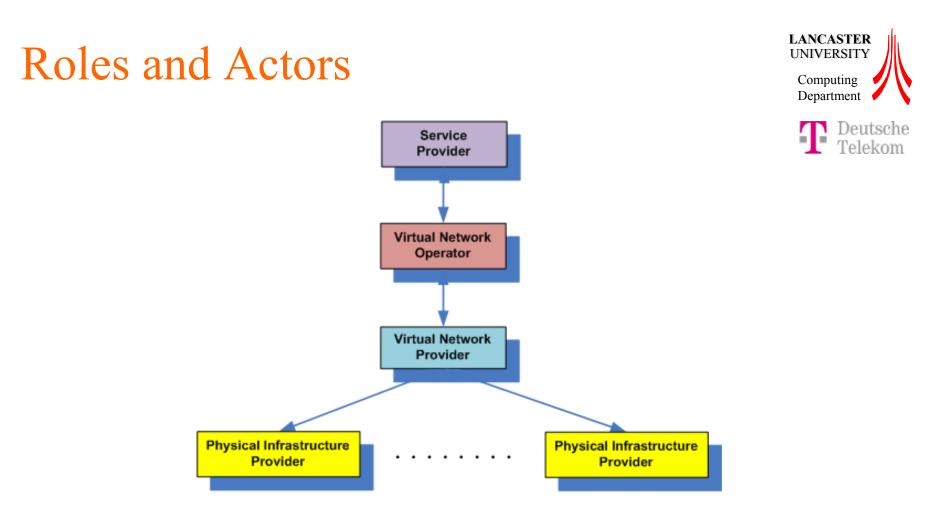
- **Resource** and **Topology** Description
- Functionality

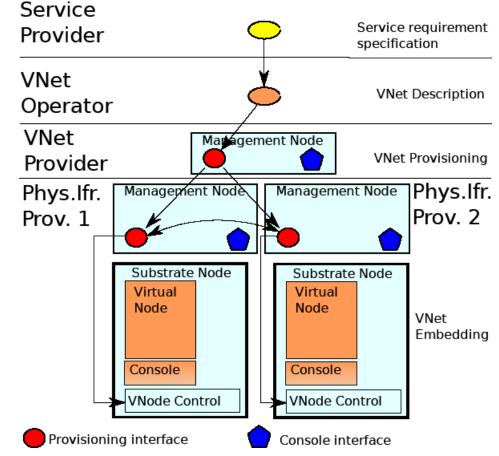
Evaluation

- Experimental Environment
- Experimental **Results**

Related Work

Conclusions and **Future Work**




T Deutsche Telekom

Network Virtualization Architecture

- Infrastructure Provider: Owns and manages the physical infrastructure
- VNet Provider: Assembles resources from one or multiple Infr. Prov into a VNet
- VNet Operator: Operates and manages instantiated VNets

VNet Provisioning

Telekom

- Resource **Discovery** (VNet Prov \leftrightarrow Inf. Prov.)
- Virtualization of Resources (Inf. Prov)
- **Topology** Construction (Inf. Prov.)

Management Access to Virtual Nodes

Deutsche

Service Provider VNet Operator VNet Management Node Provider Management Node Phys.lfr. Phys.lfr. Management Node Prov. 2 Prov. 1 Substrate Node Substrate Node Virtual Virtual Node Node Console Console VNode Control VNode Control Provisioning interface Console interface

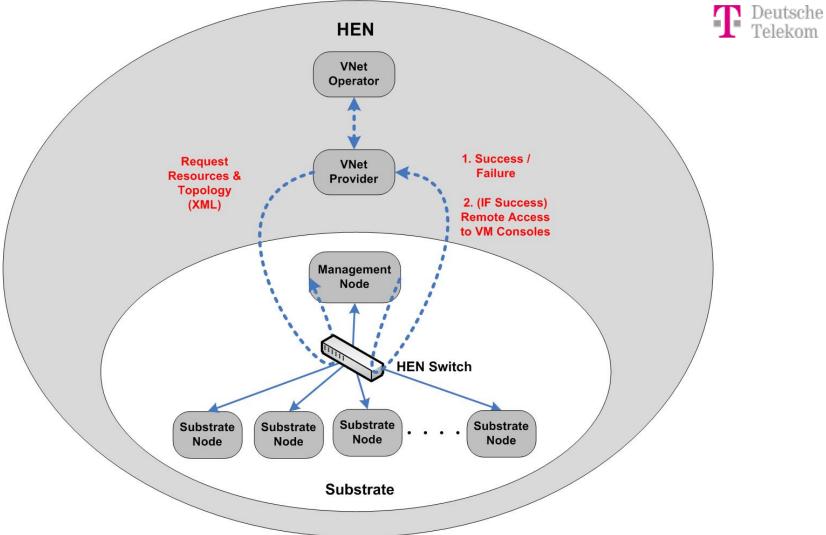
- VNet Provider establishes management access to the virtualized nodes
- VNet Provider **exposes** a control interface to the VNet Operator
- Vnet Operator **obtains** management access to the virtual nodes

Telekom

Prototype Implementation

Infrastructure and Software

Heterogeneous Experimental Network (HEN), UCL


- > **110 computer nodes** with multiple network interfaces
- Force10 E1200 switch with 500 high-speed network ports and VLAN support

Software:

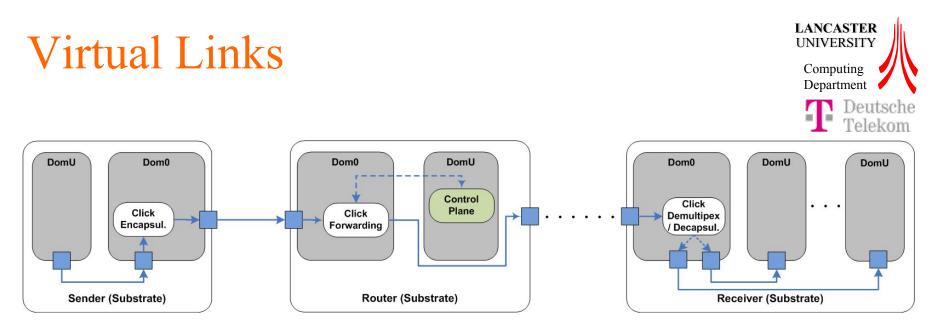
- Xen VMM
- Click Modular Router in Linux kernel
- OProfile

Prototype Overview

Resource and Topology Description

XML Schema for Resource Description:

- Separate descriptions for nodes, links and paths
- Each element has its own attributes, e.g.:
 vcomputer: location, configuration, interfaces, etc.
- Different levels of **abstraction** can be applied



Prototype Functionality

VNet Instantiation (VNet Operator ↔ VNet Provider ↔ Substrate)

- Resource discovery on either PIP or VNP
- Fully-automated **instantiation** and **configuration** (e.g. attachment of physical interfaces) of virtual nodes
- Virtual machines can be created and booted **on-demand** or **in advance** by preallocating physical resources to them
- **Tunnels** are set up using Click encapsulation/decapsulation modules
- Management Access to the Virtualized Nodes

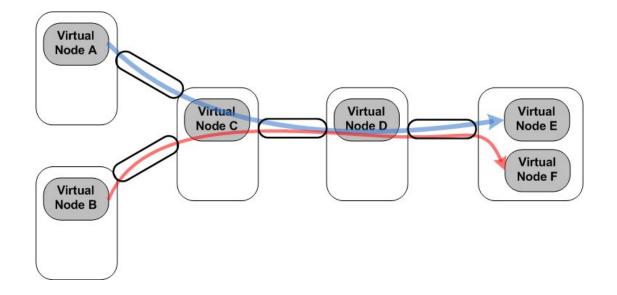
Installation of **Click** kernel modules for **tunneling** (e.g. IP-in-IP):

- Outgoing packets are **encapsulated** in IP at sender's Dom0
- Incoming packets are **decapsulated** and **de-multiplexed** and delivered to the proper DomU

Consolidation of **FPs** in a single domain for **packet forwarding**.

N. Egi et al., Towards High Performance Virtual Routers on Commodity Hardware, CoNEXT 2008

T Deutsche Telekom


Experimental Results

Experimental Environment

Dell PowerEdge 2950 nodes:

- 2 Intel Xeon X5355 CPUs (quad-core @2.66 GHz)
- 8 x 1GB Main Memory (PC-5300)
- 8-12 Gb Ethernet ports

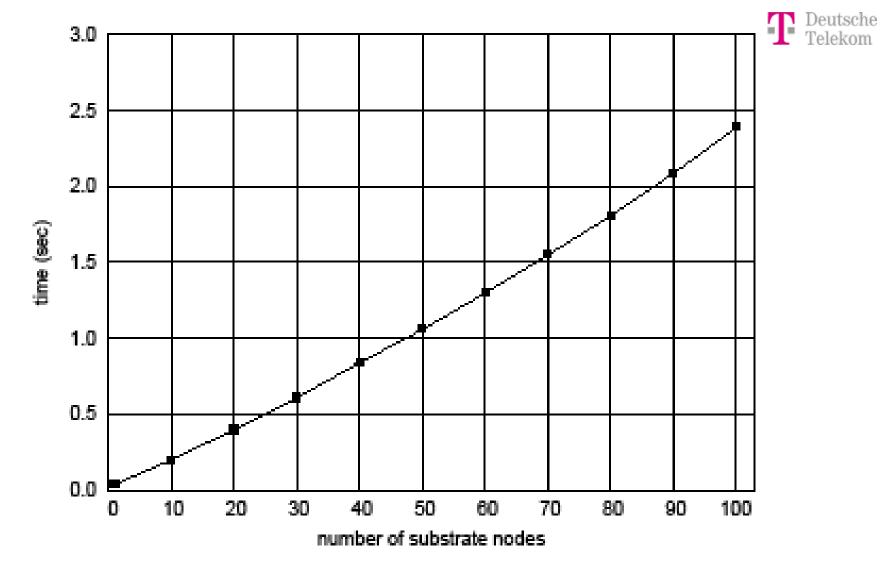
Experimental Topology:

Deutsch

VNet Instantiation Time

T Deutsche Telekom

	min	avg	max	stddev
Resource Disc. at PIP	103.38	109.47	119.27	4.43
Resource Disc. at VNP	104.08	110.37	120.79	4.27

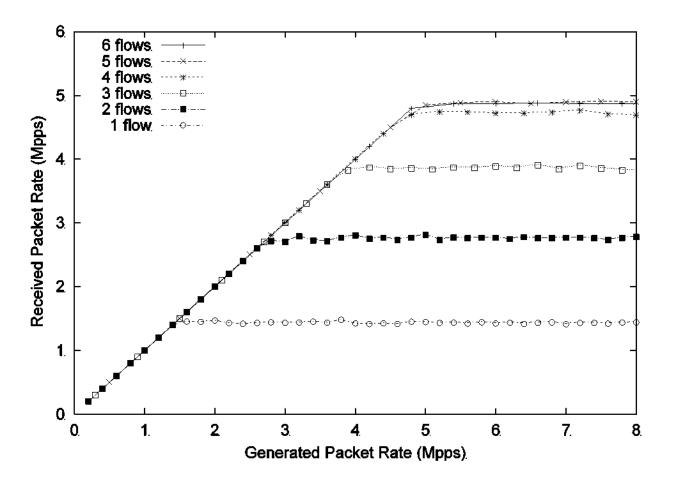

Impact of Resource Discovery (sec)

Impact of VM Resource Allocation (sec)

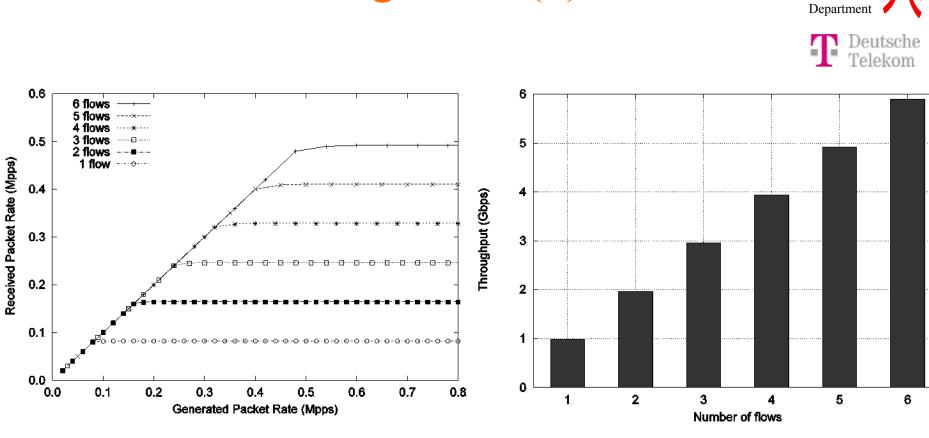
	min	avg	max	stddev
On-demand VM creation	103.38	109.47	119.27	4.43
VM Pre- allocation	15.72	16.75	17.59	0.41

Resource Information Updates

CPU Utilization


Impact of VNet Instantiation on CPU Utilization (%)

	min	avg	max	stddev
VNP	20.38	23.45	25.49	1.52
Substrate Node	16.33	19.15	22.61	2.05


Packet Forwarding Rates (1)

1-6 unidirectional flows, 64-byte packets, 1 flow per core

LANCASTER

UNIVERSITY Computing

Packet Forwarding Rates (2)

1-6 unidirectional flows, 1500-byte packets, |1 flow per core

Related Work

Network Virtualization :

- G. Schaffrath et al., Network Virtualization Architecture: Proposal and Initial Prototype, VISA 2009
- Y. Zhu et al., **Cabernet**, ReArch 2008
- A. Bavier et al., **VINI**, SIGCOMM 2006
- L. Peterson et al., **Overcoming the Internet Impasse through Virtualization**, HotNets 2004
- J. Touch et al., **X-Bone**, 1998

Router Virtualization:

• N. Egi et al., Towards High Performance Virtual Routers on Commodity Hardware, CoNEXT 2008

Conclusions

The Network Virtualization Architecture:

- facilitates service deployment
- enables new **business roles** and **players** (i.e. VNet Provider)

Our **Prototype** Implementations show that:

- VNet Instantiation with this architecture is technically feasible
- Software Virtual Routers can achieve high forwarding rates

Extension of the **Resource Description Model**

Prototype Implementations for other Components of the VNet Architecture:

- End-user Attachment to VNets
- Dynamic VNet Reprovisioning

Experimentation with Multiple Infrastructure Providers

Thank you!

Panagiotis Papadimitriou

E-mail: p.papadimitriou@lancaster.ac.uk Home Page: http://www.comp.lancs.ac.uk/~papadimp